Displaying similar documents to “Joint distribution for the Selmer ranks of the congruent number curves”

The G -graded identities of the Grassmann Algebra

Lucio Centrone (2016)

Archivum Mathematicum

Similarity:

Let G be a finite abelian group with identity element 1 G and L = g G L g be an infinite dimensional G -homogeneous vector space over a field of characteristic 0 . Let E = E ( L ) be the Grassmann algebra generated by L . It follows that E is a G -graded algebra. Let | G | be odd, then we prove that in order to describe any ideal of G -graded identities of E it is sufficient to deal with G ' -grading, where | G ' | | G | , dim F L 1 G ' = and dim F L g ' < if g ' 1 G ' . In the same spirit of the case | G | odd, if | G | is even it is sufficient to study only those G -gradings...

Maximal non valuation domains in an integral domain

Rahul Kumar, Atul Gaur (2020)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring with unity. The notion of maximal non valuation domain in an integral domain is introduced and characterized. A proper subring R of an integral domain S is called a maximal non valuation domain in S if R is not a valuation subring of S , and for any ring T such that R T S , T is a valuation subring of S . For a local domain S , the equivalence of an integrally closed maximal non VD in S and a maximal non local subring of S is established. The relation between dim ( R , S ) and...

The canonical constructions of connections on total spaces of fibred manifolds

Włodzimierz M. Mikulski (2024)

Archivum Mathematicum

Similarity:

We classify classical linear connections A ( Γ , Λ , Θ ) on the total space Y of a fibred manifold Y M induced in a natural way by the following three objects: a general connection Γ in Y M , a classical linear connection Λ on M and a linear connection Θ in the vertical bundle V Y Y . The main result says that if dim ( M ) 3 and dim ( Y ) - dim ( M ) 3 then the natural operators A under consideration form the 17 dimensional affine space.

On a system of equations with primes

Paolo Leonetti, Salvatore Tringali (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Given an integer n 3 , let u 1 , ... , u n be pairwise coprime integers 2 , 𝒟 a family of nonempty proper subsets of { 1 , ... , n } with “enough” elements, and ε a function 𝒟 { ± 1 } . Does there exist at least one prime q such that q divides i I u i - ε ( I ) for some I 𝒟 , but it does not divide u 1 u n ? We answer this question in the positive when the u i are prime powers and ε and 𝒟 are subjected to certain restrictions. We use the result to prove that, if ε 0 { ± 1 } and A is a set of three or more primes that contains all prime divisors of any...

Ramsey numbers for trees II

Zhi-Hong Sun (2021)

Czechoslovak Mathematical Journal

Similarity:

Let r ( G 1 , G 2 ) be the Ramsey number of the two graphs G 1 and G 2 . For n 1 n 2 1 let S ( n 1 , n 2 ) be the double star given by V ( S ( n 1 , n 2 ) ) = { v 0 , v 1 , ... , v n 1 , w 0 , w 1 , ... , w n 2 } and E ( S ( n 1 , n 2 ) ) = { v 0 v 1 , ... , v 0 v n 1 , v 0 w 0 , w 0 w 1 , ... , w 0 w n 2 } . We determine r ( K 1 , m - 1 , S ( n 1 , n 2 ) ) under certain conditions. For n 6 let T n 3 = S ( n - 5 , 3 ) , T n ' ' = ( V , E 2 ) and T n ' ' ' = ( V , E 3 ) , where V = { v 0 , v 1 , ... , v n - 1 } , E 2 = { v 0 v 1 , ... , v 0 v n - 4 , v 1 v n - 3 , v 1 v n - 2 , v 2 v n - 1 } and E 3 = { v 0 v 1 , ... , v 0 v n - 4 , v 1 v n - 3 , v 2 v n - 2 , v 3 v n - 1 } . We also obtain explicit formulas for r ( K 1 , m - 1 , T n ) , r ( T m ' , T n ) ( n m + 3 ) , r ( T n , T n ) , r ( T n ' , T n ) and r ( P n , T n ) , where T n { T n ' ' , T n ' ' ' , T n 3 } , P n is the path on n vertices and T n ' is the unique tree with n vertices and maximal degree n - 2 .

Contracting endomorphisms and dualizing complexes

Saeed Nasseh, Sean Sather-Wagstaff (2015)

Czechoslovak Mathematical Journal

Similarity:

We investigate how one can detect the dualizing property for a chain complex over a commutative local Noetherian ring R . Our focus is on homological properties of contracting endomorphisms of R , e.g., the Frobenius endomorphism when R contains a field of positive characteristic. For instance, in this case, when R is F -finite and C is a semidualizing R -complex, we prove that the following conditions are equivalent: (i) C is a dualizing R -complex; (ii) C 𝐑 Hom R ( n R , C ) for some n > 0 ; (iii) G C -dim n R < and C is derived...

Local-global divisibility of rational points in some commutative algebraic groups

Roberto Dvornicich, Umberto Zannier (2001)

Bulletin de la Société Mathématique de France

Similarity:

Let 𝒜 be a commutative algebraic group defined over a number field  k . We consider the following question:A complete answer for the case of the multiplicative group 𝔾 m is classical. We study other instances and in particular obtain an affirmative answer when r is a prime and  𝒜 is either an elliptic curve or a torus of small dimension with respect to r . Without restriction on the dimension of a torus, we produce an example showing that the answer can be negative even when r is a prime. ...

A new characterization of symmetric group by NSE

Azam Babai, Zeinab Akhlaghi (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group and ω ( G ) be the set of element orders of G . Let k ω ( G ) and m k ( G ) be the number of elements of order k in G . Let nse ( G ) = { m k ( G ) : k ω ( G ) } . Assume r is a prime number and let G be a group such that nse ( G ) = nse ( S r ) , where S r is the symmetric group of degree r . In this paper we prove that G S r , if r divides the order of G and r 2 does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.

On the distribution of ( k , r ) -integers in Piatetski-Shapiro sequences

Teerapat Srichan (2021)

Czechoslovak Mathematical Journal

Similarity:

A natural number n is said to be a ( k , r ) -integer if n = a k b , where k > r > 1 and b is not divisible by the r th power of any prime. We study the distribution of such ( k , r ) -integers in the Piatetski-Shapiro sequence { n c } with c > 1 . As a corollary, we also obtain similar results for semi- r -free integers.