Modular Classes of Q-Manifolds, Part II: Riemannian Structures Odd Killing Vectors Fields
Archivum Mathematicum (2020)
- Volume: 056, Issue: 3, page 153-170
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBruce, Andrew James. "Modular Classes of Q-Manifolds, Part II: Riemannian Structures $\&$ Odd Killing Vectors Fields." Archivum Mathematicum 056.3 (2020): 153-170. <http://eudml.org/doc/297194>.
@article{Bruce2020,
abstract = {We define and make an initial study of (even) Riemannian supermanifolds equipped with a homological vector field that is also a Killing vector field. We refer to such supermanifolds as Riemannian Q-manifolds. We show that such Q-manifolds are unimodular, i.e., come equipped with a Q-invariant Berezin volume.},
author = {Bruce, Andrew James},
journal = {Archivum Mathematicum},
keywords = {Q-manifolds; Riemannian supermanifolds; Killing vector fields; modular classes},
language = {eng},
number = {3},
pages = {153-170},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Modular Classes of Q-Manifolds, Part II: Riemannian Structures $\&$ Odd Killing Vectors Fields},
url = {http://eudml.org/doc/297194},
volume = {056},
year = {2020},
}
TY - JOUR
AU - Bruce, Andrew James
TI - Modular Classes of Q-Manifolds, Part II: Riemannian Structures $\&$ Odd Killing Vectors Fields
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 3
SP - 153
EP - 170
AB - We define and make an initial study of (even) Riemannian supermanifolds equipped with a homological vector field that is also a Killing vector field. We refer to such supermanifolds as Riemannian Q-manifolds. We show that such Q-manifolds are unimodular, i.e., come equipped with a Q-invariant Berezin volume.
LA - eng
KW - Q-manifolds; Riemannian supermanifolds; Killing vector fields; modular classes
UR - http://eudml.org/doc/297194
ER -
References
top- Alexandrov, M., Schwarz, A., Zaboronsky, O., Kontsevich, M., 10.1142/S0217751X97001031, Internat. J. Modern Phys. A 12 (5) (1997), 1405–1429, https://arxiv.org/abs/hep-th/9502010, arXiv:hep-th/9502010, https://doi.org/10.1142/S0217751X97001031. (1997) DOI10.1142/S0217751X97001031
- Berezin, F.A., Leites, D.A., Supermanifolds, Dokl. Akad. Nauk SSSR 224 (3) (1975), 505–508, (Russian). (1975) MR0402795
- Bruce, A.J., 10.5817/AM2017-4-203, Arch. Math. (Brno) 53 (4) (2017), 203–219. (2017) MR3733067DOI10.5817/AM2017-4-203
- Carmeli, C., Caston, L., Fioresi, R., Mathematical foundations of supersymmetry, EMS Series of Lectures in Mathematics, Zürich, 2011, xiv+287 pp., ISBN: 978-3-03719-097-5. (2011) Zbl1226.58003MR2840967
- DeWitt, B., Supermanifolds, second ed., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1992, xviii+407 pp. ISBN: 0-521-41320-6; 0-521-42377-5. (1992) MR1172996
- Duplij, S., Siegel, W., Bagger, J. (editors), Concise encyclopedia of supersymmetry and noncommutative structures in mathematics and physics, Kluwer Academic Publishers, Dordrecht, 2004, iv+561 pp. ISBN: 1-4020-1338-8. (2004) MR2051764
- Evens, S., Lu, J.H., Weinstein, A., 10.1093/qjmath/50.200.417, Quart. J. Math. Oxford Ser. (2) 50 (200) (1999), 417–436, https://arxiv.org/abs/dg-ga/9610008, arXiv:dg-ga/9610008. (1999) Zbl0968.58014MR1726784DOI10.1093/qjmath/50.200.417
- Galaev, A.S., 10.1007/s10455-011-9299-4, Ann. Global Anal. Geom. 42 (1) (2012), 1–27, https://arxiv.org/abs/0906.5250, arXiv:0906.5250. (2012) MR2912666DOI10.1007/s10455-011-9299-4
- Garnier, S., Kalus, M., 10.5817/AM2014-4-205, Arch. Math. (Brno) 50 (4) (2014), 205–218, https://arxiv.org/abs/1406.5870, arXiv:1406.5870. (2014) MR3291850DOI10.5817/AM2014-4-205
- Garnier, S., Wurzbacher, T., 10.1016/j.geomphys.2012.02.002, J. Geom. Phys. 62 (6) (2012), 1489–1508, https://arxiv.org/abs/1107.1815, arXiv:1107.1815. (2012) Zbl1242.53046MR2911220DOI10.1016/j.geomphys.2012.02.002
- Goertsches, O., Riemannian supergeometry, Math. Z. 260 (3) (2008), 557–593, https://arxiv.org/abs/math/0604143, arXiv:math/0604143. (2008) Zbl1154.58001MR2434470
- Grabowski, J., Modular classes revisited, Int. J. Geom. Methods Mod. Phys. 11 (9) (2014), 1460042, 11 pp., https://arxiv.org/abs/1311.3962, arXiv:1311.3962. (2014) Zbl1343.53082MR3270305
- Grabowski, J., Rotkiewicz, M., 10.1016/j.geomphys.2011.09.004, J. Geom. Phys. 62 (1) (2012), 21–36, https://arxiv.org/abs/1102.0180, arXiv:1102.0180. (2012) MR2854191DOI10.1016/j.geomphys.2011.09.004
- Groeger, J., Killing vector fields and harmonic superfield theories, J. Math. Phys. 55 (9) (2014), 093503, 17 pp., https://arxiv.org/abs/1301.5474, arXiv:1301.5474. (2014) MR3390802
- Kalus, M., 10.5817/AM2019-4-229, Arch. Math. (Brno) 55 (4) (2019), 229–238, https://arxiv.org/abs/1501.07117, arXiv:1501.07117. (2019) MR4038358DOI10.5817/AM2019-4-229
- Klinker, F., 10.1007/s00220-004-1277-2, Comm. Math. Phys. 255 (2) (2005), 419–467, https://arxiv.org/abs/2001.03239, arXiv:2001.03239. (2005) MR2129952DOI10.1007/s00220-004-1277-2
- Leites, D.A., 10.1070/RM1980v035n01ABEH001545, Russ. Math. Surv. 35 (1) (1980), 1–64, https://doi.org/10.1070/RM1980v035n01ABEH001545. (1980) Zbl0462.58002MR0565567DOI10.1070/RM1980v035n01ABEH001545
- Lyakhovich, S.L., Mosman, E.A., Sharapov, A.A., 10.1016/j.geomphys.2010.01.008, J. Geom. Phys. 60 (5) (2010), 729–759, https://arxiv.org/abs/0906.0466, arXiv:0906.0466. (2010) Zbl1188.58003MR2608525DOI10.1016/j.geomphys.2010.01.008
- Lyakhovich, S.L., Sharapov, A.A., 10.1016/j.nuclphysb.2004.10.001, Nuclear Phys. B 703 (3) (2004), 419–453, https://arxiv.org/abs/hep-th/0407113v2, arXiv:hep-th/0407113. (2004) Zbl1198.81179MR2105279DOI10.1016/j.nuclphysb.2004.10.001
- Manin, Y.I., Gauge field theory and complex geometry, second ed., Fundamental Principles of Mathematical Sciences, vol. 289, Springer-Verlag, Berlin, 1997, xii+346 pp. ISBN: 3-540-61378-1. (1997) Zbl0884.53002MR1632008
- Monterde, J., Sánchez-Valenzuela, O.A., 10.1007/BF02761099, Israel J. Math. 93 (1997), 157–170. (1997) MR1380639DOI10.1007/BF02761099
- Mosman, E.A., Sharapov, A.A., Quasi-Riemannian structures on supermanifolds and characteristic classes, Russian Phys. J. 54 (6) (2011), 668–672. (2011) MR2906709
- Roytenberg, D., On the structure of graded symplectic supermanifolds and Courant algebroids, Quantization, Poisson brackets and beyond, vol. 315, Amer. Math. Soc., Providence, RI, Contemp. Math. ed., 2002, (Manchester, 2001), 169–185, https://arxiv.org/abs/math/0203110, arXiv:math/0203110. (2002) Zbl1036.53057MR1958835
- Schwarz, A., 10.1007/BF02108080, Comm. Math. Phys. 158 (2) (1993), 373–396, https://arxiv.org/abs/hep-th/9210115, arXiv:hep-th/9210115. (1993) MR1249600DOI10.1007/BF02108080
- Shander, V.N., 10.1007/BF01086577, Funct. Anal. Appl. 14 (2) (1980), 160–162. (1980) MR0575229DOI10.1007/BF01086577
- Shander, V.N., 10.1007/BF01077738, Functional Anal. Appl. 22 (1) (1988), 80–82. (1988) Zbl0668.58003MR0936715DOI10.1007/BF01077738
- Vaĭntrob, A.Yu., 10.1007/BF02362649, J. Math. Sci. 82 (6) (1996), 3865–3868. (1996) MR1431553DOI10.1007/BF02362649
- Vaĭntrob, A.Yu., 10.1070/RM1997v052n02ABEH001802, Russ. Math. Surv. 52 (1997), 428–429. (1997) Zbl0955.58017MR1480150DOI10.1070/RM1997v052n02ABEH001802
- Varadarajan, V.S., Supersymmetry for mathematicians: an introduction, Courant Lecture Notes in Mathematics, 11. New York University, Courant Institute of Mathematical Sciences, New York ed., American Mathematical Society, Providence, RI, 2004, viii+300 pp. ISBN: 0-8218-3574-2. (2004) Zbl1142.58009MR2069561
- Voronov, Th., 10.1090/conm/315/05478, Contemp. Math., vol. 315, Amer. Math. Soc., Providence, RI, 2002, https://arxiv.org/abs/math/0105237, arXiv:math/0105237. (2002) MR1958834DOI10.1090/conm/315/05478
- Voronov, Th., Geometric integration theory on supermanifolds, Classic Reviews in Mathematics Mathematical Physics ed., Cambridge Scientific Publishers, 2014, 150 pp., ISBN: 978-1-904868-82-8. (2014) MR1202882
- Voronov, Th., 10.1070/SM8705, Sb. Math. 217, (11–12) (2016), 1512–1536, https://arxiv.org/abs/1503.06542, arXiv:1503.06542. (2016) MR3588978DOI10.1070/SM8705
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.