Modular Classes of Q-Manifolds, Part II: Riemannian Structures & Odd Killing Vectors Fields

Andrew James Bruce

Archivum Mathematicum (2020)

  • Volume: 056, Issue: 3, page 153-170
  • ISSN: 0044-8753

Abstract

top
We define and make an initial study of (even) Riemannian supermanifolds equipped with a homological vector field that is also a Killing vector field. We refer to such supermanifolds as Riemannian Q-manifolds. We show that such Q-manifolds are unimodular, i.e., come equipped with a Q-invariant Berezin volume.

How to cite

top

Bruce, Andrew James. "Modular Classes of Q-Manifolds, Part II: Riemannian Structures $\&$ Odd Killing Vectors Fields." Archivum Mathematicum 056.3 (2020): 153-170. <http://eudml.org/doc/297194>.

@article{Bruce2020,
abstract = {We define and make an initial study of (even) Riemannian supermanifolds equipped with a homological vector field that is also a Killing vector field. We refer to such supermanifolds as Riemannian Q-manifolds. We show that such Q-manifolds are unimodular, i.e., come equipped with a Q-invariant Berezin volume.},
author = {Bruce, Andrew James},
journal = {Archivum Mathematicum},
keywords = {Q-manifolds; Riemannian supermanifolds; Killing vector fields; modular classes},
language = {eng},
number = {3},
pages = {153-170},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Modular Classes of Q-Manifolds, Part II: Riemannian Structures $\&$ Odd Killing Vectors Fields},
url = {http://eudml.org/doc/297194},
volume = {056},
year = {2020},
}

TY - JOUR
AU - Bruce, Andrew James
TI - Modular Classes of Q-Manifolds, Part II: Riemannian Structures $\&$ Odd Killing Vectors Fields
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 3
SP - 153
EP - 170
AB - We define and make an initial study of (even) Riemannian supermanifolds equipped with a homological vector field that is also a Killing vector field. We refer to such supermanifolds as Riemannian Q-manifolds. We show that such Q-manifolds are unimodular, i.e., come equipped with a Q-invariant Berezin volume.
LA - eng
KW - Q-manifolds; Riemannian supermanifolds; Killing vector fields; modular classes
UR - http://eudml.org/doc/297194
ER -

References

top
  1. Alexandrov, M., Schwarz, A., Zaboronsky, O., Kontsevich, M., 10.1142/S0217751X97001031, Internat. J. Modern Phys. A 12 (5) (1997), 1405–1429, https://arxiv.org/abs/hep-th/9502010, arXiv:hep-th/9502010, https://doi.org/10.1142/S0217751X97001031. (1997) DOI10.1142/S0217751X97001031
  2. Berezin, F.A., Leites, D.A., Supermanifolds, Dokl. Akad. Nauk SSSR 224 (3) (1975), 505–508, (Russian). (1975) MR0402795
  3. Bruce, A.J., 10.5817/AM2017-4-203, Arch. Math. (Brno) 53 (4) (2017), 203–219. (2017) MR3733067DOI10.5817/AM2017-4-203
  4. Carmeli, C., Caston, L., Fioresi, R., Mathematical foundations of supersymmetry, EMS Series of Lectures in Mathematics, Zürich, 2011, xiv+287 pp., ISBN: 978-3-03719-097-5. (2011) Zbl1226.58003MR2840967
  5. DeWitt, B., Supermanifolds, second ed., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1992, xviii+407 pp. ISBN: 0-521-41320-6; 0-521-42377-5. (1992) MR1172996
  6. Duplij, S., Siegel, W., Bagger, J. (editors), Concise encyclopedia of supersymmetry and noncommutative structures in mathematics and physics, Kluwer Academic Publishers, Dordrecht, 2004, iv+561 pp. ISBN: 1-4020-1338-8. (2004) MR2051764
  7. Evens, S., Lu, J.H., Weinstein, A., 10.1093/qjmath/50.200.417, Quart. J. Math. Oxford Ser. (2) 50 (200) (1999), 417–436, https://arxiv.org/abs/dg-ga/9610008, arXiv:dg-ga/9610008. (1999) Zbl0968.58014MR1726784DOI10.1093/qjmath/50.200.417
  8. Galaev, A.S., 10.1007/s10455-011-9299-4, Ann. Global Anal. Geom. 42 (1) (2012), 1–27, https://arxiv.org/abs/0906.5250, arXiv:0906.5250. (2012) MR2912666DOI10.1007/s10455-011-9299-4
  9. Garnier, S., Kalus, M., 10.5817/AM2014-4-205, Arch. Math. (Brno) 50 (4) (2014), 205–218, https://arxiv.org/abs/1406.5870, arXiv:1406.5870. (2014) MR3291850DOI10.5817/AM2014-4-205
  10. Garnier, S., Wurzbacher, T., 10.1016/j.geomphys.2012.02.002, J. Geom. Phys. 62 (6) (2012), 1489–1508, https://arxiv.org/abs/1107.1815, arXiv:1107.1815. (2012) Zbl1242.53046MR2911220DOI10.1016/j.geomphys.2012.02.002
  11. Goertsches, O., Riemannian supergeometry, Math. Z. 260 (3) (2008), 557–593, https://arxiv.org/abs/math/0604143, arXiv:math/0604143. (2008) Zbl1154.58001MR2434470
  12. Grabowski, J., Modular classes revisited, Int. J. Geom. Methods Mod. Phys. 11 (9) (2014), 1460042, 11 pp., https://arxiv.org/abs/1311.3962, arXiv:1311.3962. (2014) Zbl1343.53082MR3270305
  13. Grabowski, J., Rotkiewicz, M., 10.1016/j.geomphys.2011.09.004, J. Geom. Phys. 62 (1) (2012), 21–36, https://arxiv.org/abs/1102.0180, arXiv:1102.0180. (2012) MR2854191DOI10.1016/j.geomphys.2011.09.004
  14. Groeger, J., Killing vector fields and harmonic superfield theories, J. Math. Phys. 55 (9) (2014), 093503, 17 pp., https://arxiv.org/abs/1301.5474, arXiv:1301.5474. (2014) MR3390802
  15. Kalus, M., 10.5817/AM2019-4-229, Arch. Math. (Brno) 55 (4) (2019), 229–238, https://arxiv.org/abs/1501.07117, arXiv:1501.07117. (2019) MR4038358DOI10.5817/AM2019-4-229
  16. Klinker, F., 10.1007/s00220-004-1277-2, Comm. Math. Phys. 255 (2) (2005), 419–467, https://arxiv.org/abs/2001.03239, arXiv:2001.03239. (2005) MR2129952DOI10.1007/s00220-004-1277-2
  17. Leites, D.A., 10.1070/RM1980v035n01ABEH001545, Russ. Math. Surv. 35 (1) (1980), 1–64, https://doi.org/10.1070/RM1980v035n01ABEH001545. (1980) Zbl0462.58002MR0565567DOI10.1070/RM1980v035n01ABEH001545
  18. Lyakhovich, S.L., Mosman, E.A., Sharapov, A.A., 10.1016/j.geomphys.2010.01.008, J. Geom. Phys. 60 (5) (2010), 729–759, https://arxiv.org/abs/0906.0466, arXiv:0906.0466. (2010) Zbl1188.58003MR2608525DOI10.1016/j.geomphys.2010.01.008
  19. Lyakhovich, S.L., Sharapov, A.A., 10.1016/j.nuclphysb.2004.10.001, Nuclear Phys. B 703 (3) (2004), 419–453, https://arxiv.org/abs/hep-th/0407113v2, arXiv:hep-th/0407113. (2004) Zbl1198.81179MR2105279DOI10.1016/j.nuclphysb.2004.10.001
  20. Manin, Y.I., Gauge field theory and complex geometry, second ed., Fundamental Principles of Mathematical Sciences, vol. 289, Springer-Verlag, Berlin, 1997, xii+346 pp. ISBN: 3-540-61378-1. (1997) Zbl0884.53002MR1632008
  21. Monterde, J., Sánchez-Valenzuela, O.A., 10.1007/BF02761099, Israel J. Math. 93 (1997), 157–170. (1997) MR1380639DOI10.1007/BF02761099
  22. Mosman, E.A., Sharapov, A.A., Quasi-Riemannian structures on supermanifolds and characteristic classes, Russian Phys. J. 54 (6) (2011), 668–672. (2011) MR2906709
  23. Roytenberg, D., On the structure of graded symplectic supermanifolds and Courant algebroids, Quantization, Poisson brackets and beyond, vol. 315, Amer. Math. Soc., Providence, RI, Contemp. Math. ed., 2002, (Manchester, 2001), 169–185, https://arxiv.org/abs/math/0203110, arXiv:math/0203110. (2002) Zbl1036.53057MR1958835
  24. Schwarz, A., 10.1007/BF02108080, Comm. Math. Phys. 158 (2) (1993), 373–396, https://arxiv.org/abs/hep-th/9210115, arXiv:hep-th/9210115. (1993) MR1249600DOI10.1007/BF02108080
  25. Shander, V.N., 10.1007/BF01086577, Funct. Anal. Appl. 14 (2) (1980), 160–162. (1980) MR0575229DOI10.1007/BF01086577
  26. Shander, V.N., 10.1007/BF01077738, Functional Anal. Appl. 22 (1) (1988), 80–82. (1988) Zbl0668.58003MR0936715DOI10.1007/BF01077738
  27. Vaĭntrob, A.Yu., 10.1007/BF02362649, J. Math. Sci. 82 (6) (1996), 3865–3868. (1996) MR1431553DOI10.1007/BF02362649
  28. Vaĭntrob, A.Yu., 10.1070/RM1997v052n02ABEH001802, Russ. Math. Surv. 52 (1997), 428–429. (1997) Zbl0955.58017MR1480150DOI10.1070/RM1997v052n02ABEH001802
  29. Varadarajan, V.S., Supersymmetry for mathematicians: an introduction, Courant Lecture Notes in Mathematics, 11. New York University, Courant Institute of Mathematical Sciences, New York ed., American Mathematical Society, Providence, RI, 2004, viii+300 pp. ISBN: 0-8218-3574-2. (2004) Zbl1142.58009MR2069561
  30. Voronov, Th., 10.1090/conm/315/05478, Contemp. Math., vol. 315, Amer. Math. Soc., Providence, RI, 2002, https://arxiv.org/abs/math/0105237, arXiv:math/0105237. (2002) MR1958834DOI10.1090/conm/315/05478
  31. Voronov, Th., Geometric integration theory on supermanifolds, Classic Reviews in Mathematics Mathematical Physics ed., Cambridge Scientific Publishers, 2014, 150 pp., ISBN: 978-1-904868-82-8. (2014) MR1202882
  32. Voronov, Th., 10.1070/SM8705, Sb. Math. 217, (11–12) (2016), 1512–1536, https://arxiv.org/abs/1503.06542, arXiv:1503.06542. (2016) MR3588978DOI10.1070/SM8705

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.