Modular classes of Q-manifolds: a review and some applications

Andrew James Bruce

Archivum Mathematicum (2017)

  • Volume: 053, Issue: 4, page 203-219
  • ISSN: 0044-8753

Abstract

top
A Q-manifold is a supermanifold equipped with an odd vector field that squares to zero. The notion of the modular class of a Q-manifold – which is viewed as the obstruction to the existence of a Q-invariant Berezin volume – is not well know. We review the basic ideas and then apply this technology to various examples, including L -algebroids and higher Poisson manifolds.

How to cite

top

Bruce, Andrew James. "Modular classes of Q-manifolds: a review and some applications." Archivum Mathematicum 053.4 (2017): 203-219. <http://eudml.org/doc/294812>.

@article{Bruce2017,
abstract = {A Q-manifold is a supermanifold equipped with an odd vector field that squares to zero. The notion of the modular class of a Q-manifold – which is viewed as the obstruction to the existence of a Q-invariant Berezin volume – is not well know. We review the basic ideas and then apply this technology to various examples, including $L_\{\infty \}$-algebroids and higher Poisson manifolds.},
author = {Bruce, Andrew James},
journal = {Archivum Mathematicum},
keywords = {Q-manifolds; modular classes; characteristic classes; higher Poisson manifolds; $L_\{\infty \}$-algebroids},
language = {eng},
number = {4},
pages = {203-219},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Modular classes of Q-manifolds: a review and some applications},
url = {http://eudml.org/doc/294812},
volume = {053},
year = {2017},
}

TY - JOUR
AU - Bruce, Andrew James
TI - Modular classes of Q-manifolds: a review and some applications
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 4
SP - 203
EP - 219
AB - A Q-manifold is a supermanifold equipped with an odd vector field that squares to zero. The notion of the modular class of a Q-manifold – which is viewed as the obstruction to the existence of a Q-invariant Berezin volume – is not well know. We review the basic ideas and then apply this technology to various examples, including $L_{\infty }$-algebroids and higher Poisson manifolds.
LA - eng
KW - Q-manifolds; modular classes; characteristic classes; higher Poisson manifolds; $L_{\infty }$-algebroids
UR - http://eudml.org/doc/294812
ER -

References

top
  1. Batalin, I.A., Vilkovisky, G.A., 10.1016/0370-2693(81)90205-7, Phys. Lett. B 102 (1) (1981), 27–31. (1981) MR0616572DOI10.1016/0370-2693(81)90205-7
  2. Batalin, I.A., Vilkovisky, G.A., 10.1103/PhysRevD.28.2567, Phys. Rev. D (3) 28 (10) (1983), 2567–2582. (1983) MR0726170DOI10.1103/PhysRevD.28.2567
  3. Batalin, I.A., Vilkovisky, G.A., Closure of the gauge algebra, generalized Lie equations and Feynman rules, Nuclear Phys. B 234 (1) (1984), 106–124. (1984) MR0736479
  4. Bonavolontà, G., Poncin, N., 10.1016/j.geomphys.2013.05.004, J. Geom. Phys. 73 (2013), 70–90, arXiv:1207.3590. (2013) Zbl1332.58005MR3090103DOI10.1016/j.geomphys.2013.05.004
  5. Braun, C., Lazarev, A., 10.1016/j.jpaa.2015.05.017, J. Pure Appl. Algebra 219 (11 (2015), 5158–5194, arXiv:1309.3219. (2015) MR3351579DOI10.1016/j.jpaa.2015.05.017
  6. Bruce, A.J., 10.1016/S0034-4877(11)00010-3, Rep. Math. Phys. 67 (2) (2011), 157–177, arXiv:1007.1389. (2011) Zbl1237.53077MR2840338DOI10.1016/S0034-4877(11)00010-3
  7. Bruce, A.J., Grabowska, K., Grabowski, J., 10.1016/j.geomphys.2015.12.004, J. Geom. Phys. 101 (2016), 71–99, arXiv:1409.0439. (2016) Zbl1334.58002MR3453885DOI10.1016/j.geomphys.2015.12.004
  8. Carmeli, C., Caston, L., Fioresi, R., Mathematical foundations of supersymmetry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2011, xiv+287pp., ISBN: 978-3-03719-097-5. (2011) Zbl1226.58003MR2840967
  9. Damianou, P.A., Fernandes, R.L., 10.5802/aif.2346, Ann. Inst. Fourier (Grenoble) 58 (1) (2008), 107–137, arXiv:math/0607784. (2008) Zbl1147.53065MR2401218DOI10.5802/aif.2346
  10. Evens, S., Lu, J.H., Weinstein, A., 10.1093/qjmath/50.200.417, Quart. J. Math. Oxford Ser. (2) 50 (1999), 417–436, arXiv:dg-ga/9610008. (1999) Zbl0968.58014MR1726784DOI10.1093/qjmath/50.200.417
  11. Fernandes, R.L., 10.1006/aima.2001.2070, Adv. Math. 170 (1) (2002), 119–179, arXiv:math/0007132. (2002) Zbl1007.22007MR1929305DOI10.1006/aima.2001.2070
  12. Grabowski, J., 10.1007/s00031-012-9197-2, Transform. Groups 17 (4) (2011), 989–1010, arXiv:1108.2366. (2011) MR3000478DOI10.1007/s00031-012-9197-2
  13. Grabowski, J., Modular classes revisited, J. Geom. Methods Mod. Phys 11 (9) (2014), 11pp., arXiv:1311.3962. (2014) Zbl1343.53082MR3270305
  14. Grabowski, J., Marmo, G., Michor, P.W., 10.5802/aif.2172, Ann. Inst. Fourier (Grenoble) 56 (1) (2006), 69–83, arXiv:math/0310072. (2006) Zbl1141.17018MR2228680DOI10.5802/aif.2172
  15. Granåker, J., Unimodular L-infinity algebras, preprint (2008), arXiv:0803.1763. 
  16. Khudaverdian, H.M., 10.1090/conm/315/05481, Quantization, Poisson brackets and beyond, Contemp. Math., vol. 315, Amer. Math. Soc., Providence, RI, 2002. (2002) Zbl1047.53049MR1958837DOI10.1090/conm/315/05481
  17. Khudaverdian, H.M., Voronov, Th.Th., 10.1023/A:1021671812079, Lett. Math. Phys. 62 (2) (2002), 127–142, arXiv:math/0205202. (2002) Zbl1044.58042MR1952122DOI10.1023/A:1021671812079
  18. Khudaverdian, H.M., Voronov, Th.Th., Higher Poisson brackets and differential forms, Geometric methods in physics, AIP Conf. Proc., 1079, Amer. Inst. Phys., Melville, NY, 2008, arXiv:0808.3406, pp. 203–215. (2008) Zbl1166.70011MR2757715
  19. Kosmann-Schwarzbach, Y., Poisson manifolds, Lie algebroids, modular classes: a survey, SIGMA (2008), paper 005, 30pp., arXiv:0710.3098. (2008) Zbl1147.53067MR2369386
  20. Koszul, J., Crochet de Schouten-Nijenhuis et cohomologie,The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque, Numéro Hors Série (1985), 257–271. (1985) MR0837203
  21. Kotov, A., Strobl, T., 10.1142/S0219887815500061, Int. J. Geom. Methods Mod. Phys. 12 (1) (2015), 26 pp., 1550006 arXiv:0711.4106. (2015) Zbl1311.58002MR3293862DOI10.1142/S0219887815500061
  22. Lyakhovich, S.L., Mosman, E.A., Sharapov, A.A., 10.1016/j.geomphys.2010.01.008, J. Geom. Phys. 60 (5) (2010), 729–759, arXiv:0906.0466. (2010) Zbl1188.58003MR2608525DOI10.1016/j.geomphys.2010.01.008
  23. Lyakhovich, S.L., Sharapov, A.A., 10.1016/j.nuclphysb.2004.10.001, Nuclear Phys. B 703 (3) (2004), 419–453, arXiv:0906.0466. (2004) Zbl1198.81179MR2105279DOI10.1016/j.nuclphysb.2004.10.001
  24. Mackenzie, K.C.H., 10.1016/0001-8708(92)90036-K, Adv. Math. 94 (2) (1992), 180–239. (1992) Zbl0765.57025MR1174393DOI10.1016/0001-8708(92)90036-K
  25. Mackenzie, K.C.H., 10.1006/aima.1999.1892, Adv. Math. 154 (1) (2000), 46–75. (2000) Zbl0971.58015MR1780095DOI10.1006/aima.1999.1892
  26. Manin, Y.I., Gauge field theory and complex geometry, Fundamental Principles of Mathematical Sciences, vol. 289, Springer-Verlag, Berlin, 2nd ed., 1997, xii+346 pp. ISBN: 3-540-61378-1. (1997) Zbl0884.53002MR1632008
  27. Mehta, R.A., 10.4310/JSG.2009.v7.n3.a1, J. Symplectic Geom. 7 (3) (2009), 263–293, arXiv:math/0703234. (2009) Zbl1215.22002MR2534186DOI10.4310/JSG.2009.v7.n3.a1
  28. Roytenberg, D., On the structure of graded symplectic supermanifolds and Courant algebroids, Quantization, Poisson brackets and beyond, Contemp. Math., vol. 315, Amer. Math. Soc., Providence, RI, 2002, arXiv:math/0203110, pp. 169–185. (2002) Zbl1036.53057MR1958835
  29. Roytenberg, D., The modular class of a differential graded manifold, talk presented at the International Workshop on Gauge Theories, Supersymmetry and Mathematical Physics, Lyon, France, 2010, 6-10 April 2010. (2010) 
  30. Shander, V.N., 10.1007/BF01077738, Funct. Anal. Appl. 22 (1) (1988), 80–82. (1988) Zbl0668.58003MR0936715DOI10.1007/BF01077738
  31. Sheng, Y., Zhu, C., Higher extensions of Lie algebroids, Commun. Contemp. Math. 0 (2013), 1650034, arXiv:1103.5920. (2013) MR3631929
  32. Vaĭntrob, A.Yu., 10.1070/RM1997v052n02ABEH001802, Russ. Math. Surv. 52 (1997), 428–429. (1997) Zbl0955.58017MR1480150DOI10.1070/RM1997v052n02ABEH001802
  33. Varadarajan, V.S., Supersymmetry for mathematicians: an introduction, Courant Lecture Notes in Mathematics, 11. New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2004, viii+300 pp. ISBN: 0-8218-3574-2. (2004) Zbl1142.58009MR2069561
  34. Voronov, Th., Q-manifolds and Mackenzie theory: an overview, preprint (2007), arXiv:0709.4232. MR2971727
  35. Voronov, Th., 10.1016/j.jpaa.2005.01.010, J. Pure Appl. Algebra 202 (1–3) (2005), 133–153, arXiv:math/0304038. (2005) Zbl1086.17012MR2163405DOI10.1016/j.jpaa.2005.01.010
  36. Voronov, Th., 10.1007/s00220-012-1568-y, Comm. Math. Phys. 315 (2012), 279–310. (2012) Zbl1261.53080MR2971727DOI10.1007/s00220-012-1568-y
  37. Weinstein, A., 10.1016/S0393-0440(97)80011-3, J. Geom. Phys. 23 (1997), 379–394. (1997) Zbl0902.58013MR1484598DOI10.1016/S0393-0440(97)80011-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.