Modular classes of Q-manifolds: a review and some applications
Archivum Mathematicum (2017)
- Volume: 053, Issue: 4, page 203-219
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBruce, Andrew James. "Modular classes of Q-manifolds: a review and some applications." Archivum Mathematicum 053.4 (2017): 203-219. <http://eudml.org/doc/294812>.
@article{Bruce2017,
abstract = {A Q-manifold is a supermanifold equipped with an odd vector field that squares to zero. The notion of the modular class of a Q-manifold – which is viewed as the obstruction to the existence of a Q-invariant Berezin volume – is not well know. We review the basic ideas and then apply this technology to various examples, including $L_\{\infty \}$-algebroids and higher Poisson manifolds.},
author = {Bruce, Andrew James},
journal = {Archivum Mathematicum},
keywords = {Q-manifolds; modular classes; characteristic classes; higher Poisson manifolds; $L_\{\infty \}$-algebroids},
language = {eng},
number = {4},
pages = {203-219},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Modular classes of Q-manifolds: a review and some applications},
url = {http://eudml.org/doc/294812},
volume = {053},
year = {2017},
}
TY - JOUR
AU - Bruce, Andrew James
TI - Modular classes of Q-manifolds: a review and some applications
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 4
SP - 203
EP - 219
AB - A Q-manifold is a supermanifold equipped with an odd vector field that squares to zero. The notion of the modular class of a Q-manifold – which is viewed as the obstruction to the existence of a Q-invariant Berezin volume – is not well know. We review the basic ideas and then apply this technology to various examples, including $L_{\infty }$-algebroids and higher Poisson manifolds.
LA - eng
KW - Q-manifolds; modular classes; characteristic classes; higher Poisson manifolds; $L_{\infty }$-algebroids
UR - http://eudml.org/doc/294812
ER -
References
top- Batalin, I.A., Vilkovisky, G.A., 10.1016/0370-2693(81)90205-7, Phys. Lett. B 102 (1) (1981), 27–31. (1981) MR0616572DOI10.1016/0370-2693(81)90205-7
- Batalin, I.A., Vilkovisky, G.A., 10.1103/PhysRevD.28.2567, Phys. Rev. D (3) 28 (10) (1983), 2567–2582. (1983) MR0726170DOI10.1103/PhysRevD.28.2567
- Batalin, I.A., Vilkovisky, G.A., Closure of the gauge algebra, generalized Lie equations and Feynman rules, Nuclear Phys. B 234 (1) (1984), 106–124. (1984) MR0736479
- Bonavolontà, G., Poncin, N., 10.1016/j.geomphys.2013.05.004, J. Geom. Phys. 73 (2013), 70–90, arXiv:1207.3590. (2013) Zbl1332.58005MR3090103DOI10.1016/j.geomphys.2013.05.004
- Braun, C., Lazarev, A., 10.1016/j.jpaa.2015.05.017, J. Pure Appl. Algebra 219 (11 (2015), 5158–5194, arXiv:1309.3219. (2015) MR3351579DOI10.1016/j.jpaa.2015.05.017
- Bruce, A.J., 10.1016/S0034-4877(11)00010-3, Rep. Math. Phys. 67 (2) (2011), 157–177, arXiv:1007.1389. (2011) Zbl1237.53077MR2840338DOI10.1016/S0034-4877(11)00010-3
- Bruce, A.J., Grabowska, K., Grabowski, J., 10.1016/j.geomphys.2015.12.004, J. Geom. Phys. 101 (2016), 71–99, arXiv:1409.0439. (2016) Zbl1334.58002MR3453885DOI10.1016/j.geomphys.2015.12.004
- Carmeli, C., Caston, L., Fioresi, R., Mathematical foundations of supersymmetry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2011, xiv+287pp., ISBN: 978-3-03719-097-5. (2011) Zbl1226.58003MR2840967
- Damianou, P.A., Fernandes, R.L., 10.5802/aif.2346, Ann. Inst. Fourier (Grenoble) 58 (1) (2008), 107–137, arXiv:math/0607784. (2008) Zbl1147.53065MR2401218DOI10.5802/aif.2346
- Evens, S., Lu, J.H., Weinstein, A., 10.1093/qjmath/50.200.417, Quart. J. Math. Oxford Ser. (2) 50 (1999), 417–436, arXiv:dg-ga/9610008. (1999) Zbl0968.58014MR1726784DOI10.1093/qjmath/50.200.417
- Fernandes, R.L., 10.1006/aima.2001.2070, Adv. Math. 170 (1) (2002), 119–179, arXiv:math/0007132. (2002) Zbl1007.22007MR1929305DOI10.1006/aima.2001.2070
- Grabowski, J., 10.1007/s00031-012-9197-2, Transform. Groups 17 (4) (2011), 989–1010, arXiv:1108.2366. (2011) MR3000478DOI10.1007/s00031-012-9197-2
- Grabowski, J., Modular classes revisited, J. Geom. Methods Mod. Phys 11 (9) (2014), 11pp., arXiv:1311.3962. (2014) Zbl1343.53082MR3270305
- Grabowski, J., Marmo, G., Michor, P.W., 10.5802/aif.2172, Ann. Inst. Fourier (Grenoble) 56 (1) (2006), 69–83, arXiv:math/0310072. (2006) Zbl1141.17018MR2228680DOI10.5802/aif.2172
- Granåker, J., Unimodular L-infinity algebras, preprint (2008), arXiv:0803.1763.
- Khudaverdian, H.M., 10.1090/conm/315/05481, Quantization, Poisson brackets and beyond, Contemp. Math., vol. 315, Amer. Math. Soc., Providence, RI, 2002. (2002) Zbl1047.53049MR1958837DOI10.1090/conm/315/05481
- Khudaverdian, H.M., Voronov, Th.Th., 10.1023/A:1021671812079, Lett. Math. Phys. 62 (2) (2002), 127–142, arXiv:math/0205202. (2002) Zbl1044.58042MR1952122DOI10.1023/A:1021671812079
- Khudaverdian, H.M., Voronov, Th.Th., Higher Poisson brackets and differential forms, Geometric methods in physics, AIP Conf. Proc., 1079, Amer. Inst. Phys., Melville, NY, 2008, arXiv:0808.3406, pp. 203–215. (2008) Zbl1166.70011MR2757715
- Kosmann-Schwarzbach, Y., Poisson manifolds, Lie algebroids, modular classes: a survey, SIGMA (2008), paper 005, 30pp., arXiv:0710.3098. (2008) Zbl1147.53067MR2369386
- Koszul, J., Crochet de Schouten-Nijenhuis et cohomologie,The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque, Numéro Hors Série (1985), 257–271. (1985) MR0837203
- Kotov, A., Strobl, T., 10.1142/S0219887815500061, Int. J. Geom. Methods Mod. Phys. 12 (1) (2015), 26 pp., 1550006 arXiv:0711.4106. (2015) Zbl1311.58002MR3293862DOI10.1142/S0219887815500061
- Lyakhovich, S.L., Mosman, E.A., Sharapov, A.A., 10.1016/j.geomphys.2010.01.008, J. Geom. Phys. 60 (5) (2010), 729–759, arXiv:0906.0466. (2010) Zbl1188.58003MR2608525DOI10.1016/j.geomphys.2010.01.008
- Lyakhovich, S.L., Sharapov, A.A., 10.1016/j.nuclphysb.2004.10.001, Nuclear Phys. B 703 (3) (2004), 419–453, arXiv:0906.0466. (2004) Zbl1198.81179MR2105279DOI10.1016/j.nuclphysb.2004.10.001
- Mackenzie, K.C.H., 10.1016/0001-8708(92)90036-K, Adv. Math. 94 (2) (1992), 180–239. (1992) Zbl0765.57025MR1174393DOI10.1016/0001-8708(92)90036-K
- Mackenzie, K.C.H., 10.1006/aima.1999.1892, Adv. Math. 154 (1) (2000), 46–75. (2000) Zbl0971.58015MR1780095DOI10.1006/aima.1999.1892
- Manin, Y.I., Gauge field theory and complex geometry, Fundamental Principles of Mathematical Sciences, vol. 289, Springer-Verlag, Berlin, 2nd ed., 1997, xii+346 pp. ISBN: 3-540-61378-1. (1997) Zbl0884.53002MR1632008
- Mehta, R.A., 10.4310/JSG.2009.v7.n3.a1, J. Symplectic Geom. 7 (3) (2009), 263–293, arXiv:math/0703234. (2009) Zbl1215.22002MR2534186DOI10.4310/JSG.2009.v7.n3.a1
- Roytenberg, D., On the structure of graded symplectic supermanifolds and Courant algebroids, Quantization, Poisson brackets and beyond, Contemp. Math., vol. 315, Amer. Math. Soc., Providence, RI, 2002, arXiv:math/0203110, pp. 169–185. (2002) Zbl1036.53057MR1958835
- Roytenberg, D., The modular class of a differential graded manifold, talk presented at the International Workshop on Gauge Theories, Supersymmetry and Mathematical Physics, Lyon, France, 2010, 6-10 April 2010. (2010)
- Shander, V.N., 10.1007/BF01077738, Funct. Anal. Appl. 22 (1) (1988), 80–82. (1988) Zbl0668.58003MR0936715DOI10.1007/BF01077738
- Sheng, Y., Zhu, C., Higher extensions of Lie algebroids, Commun. Contemp. Math. 0 (2013), 1650034, arXiv:1103.5920. (2013) MR3631929
- Vaĭntrob, A.Yu., 10.1070/RM1997v052n02ABEH001802, Russ. Math. Surv. 52 (1997), 428–429. (1997) Zbl0955.58017MR1480150DOI10.1070/RM1997v052n02ABEH001802
- Varadarajan, V.S., Supersymmetry for mathematicians: an introduction, Courant Lecture Notes in Mathematics, 11. New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2004, viii+300 pp. ISBN: 0-8218-3574-2. (2004) Zbl1142.58009MR2069561
- Voronov, Th., Q-manifolds and Mackenzie theory: an overview, preprint (2007), arXiv:0709.4232. MR2971727
- Voronov, Th., 10.1016/j.jpaa.2005.01.010, J. Pure Appl. Algebra 202 (1–3) (2005), 133–153, arXiv:math/0304038. (2005) Zbl1086.17012MR2163405DOI10.1016/j.jpaa.2005.01.010
- Voronov, Th., 10.1007/s00220-012-1568-y, Comm. Math. Phys. 315 (2012), 279–310. (2012) Zbl1261.53080MR2971727DOI10.1007/s00220-012-1568-y
- Weinstein, A., 10.1016/S0393-0440(97)80011-3, J. Geom. Phys. 23 (1997), 379–394. (1997) Zbl0902.58013MR1484598DOI10.1016/S0393-0440(97)80011-3
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.