On variants of Arnold conjecture

Roman Golovko

Archivum Mathematicum (2020)

  • Volume: 056, Issue: 5, page 277-286
  • ISSN: 0044-8753

Abstract

top
In this note we discuss the collection of statements known as Arnold conjecture for Hamiltonian diffeomorphisms of closed symplectic manifolds. We provide an overview of the homological, stable and strong versions of Arnold conjecture for non-degenerate Hamiltonian systems, a few versions of Arnold conjecture for possibly degenerate Hamiltonian systems, the degenerate version of Arnold conjecture for Hamiltonian homeomorphisms and Sandon’s version of Arnold conjecture for contactomorphisms.

How to cite

top

Golovko, Roman. "On variants of Arnold conjecture." Archivum Mathematicum 056.5 (2020): 277-286. <http://eudml.org/doc/297198>.

@article{Golovko2020,
abstract = {In this note we discuss the collection of statements known as Arnold conjecture for Hamiltonian diffeomorphisms of closed symplectic manifolds. We provide an overview of the homological, stable and strong versions of Arnold conjecture for non-degenerate Hamiltonian systems, a few versions of Arnold conjecture for possibly degenerate Hamiltonian systems, the degenerate version of Arnold conjecture for Hamiltonian homeomorphisms and Sandon’s version of Arnold conjecture for contactomorphisms.},
author = {Golovko, Roman},
journal = {Archivum Mathematicum},
keywords = {Arnold conjecture; fixed points; Hamiltonian symplectomorphisms},
language = {eng},
number = {5},
pages = {277-286},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On variants of Arnold conjecture},
url = {http://eudml.org/doc/297198},
volume = {056},
year = {2020},
}

TY - JOUR
AU - Golovko, Roman
TI - On variants of Arnold conjecture
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 5
SP - 277
EP - 286
AB - In this note we discuss the collection of statements known as Arnold conjecture for Hamiltonian diffeomorphisms of closed symplectic manifolds. We provide an overview of the homological, stable and strong versions of Arnold conjecture for non-degenerate Hamiltonian systems, a few versions of Arnold conjecture for possibly degenerate Hamiltonian systems, the degenerate version of Arnold conjecture for Hamiltonian homeomorphisms and Sandon’s version of Arnold conjecture for contactomorphisms.
LA - eng
KW - Arnold conjecture; fixed points; Hamiltonian symplectomorphisms
UR - http://eudml.org/doc/297198
ER -

References

top
  1. Abbondandolo, A., Morse theory for Hamiltonian systems, Chapman Hall/CRC, Res. Notes Math., Boca Raton FL, 2001. (2001) MR1824111
  2. Arnold, V.I., Mathematical Methods of Classical Mechanics, Grad. Texts in Math., vol. 60, Springer-Verlag, New York, 1989. (1989) MR0997295
  3. Barraud, J.-F., 10.24033/asens.2366, Ann. Sci. École Norm. Sup. (4) 51 (3) (2018), 773–809. (2018) MR3831037DOI10.24033/asens.2366
  4. Buhovsky, L., Humilière, V., Seyfaddini, S., An Arnold-type principle for non-smooth objects, preprint 2019, available at arXiv:1909.07081. 
  5. Buhovsky, L., Humilière, V., Seyfaddini, S., 10.1007/s00222-018-0797-x, Invent. Math. 213 (2018), 759–809. (2018) MR3827210DOI10.1007/s00222-018-0797-x
  6. Conley, C., Zehnder, E., 10.1007/BF01393824, Invent. Math. 73 (1983), 33–49. (1983) MR0707347DOI10.1007/BF01393824
  7. Damian, M., 10.1112/S0024609301008955, Bull. London Math. Soc. 34 (2002), 420–430. (2002) MR1897421DOI10.1112/S0024609301008955
  8. Dimitroglou Rizell, G., Golovko, R., The number of Hamiltonian fixed points on symplectically aspherical manifolds, Proceedings of the Geometry-Topology Conference 2016, Gökova Geometry-Topology Conference (GGT), Gökova, 2017, pp. 138–150. (2017) MR3676086
  9. Eliashberg, Y., Estimates on the number of fixed points of area preserving transformations, Syktyvkar University, preprint 1979. 
  10. Filippenko, B., Wehrheim, K., A polyfold proof of the Arnold conjecture, preprint 2018, available at arXiv:1810.06180. MR3576532
  11. Fish, J., Hofer, H., Lectures on Polyfolds and Symplectic Field Theory, preprint 2018, available at arXiv:1808.07147. MR3676594
  12. Floer, A., 10.1002/cpa.3160410402, Comm. Pure Appl. Math. 41 (1988), 393–407. (1988) MR0933228DOI10.1002/cpa.3160410402
  13. Floer, A., 10.4310/jdg/1214442477, J. Differential Geom. 28 (1988), 513–547. (1988) MR0965228DOI10.4310/jdg/1214442477
  14. Floer, A., 10.1002/cpa.3160410603, Comm. Pure Appl. Math. 41 (1988), 775–813. (1988) MR0948771DOI10.1002/cpa.3160410603
  15. Floer, A., 10.1007/BF01260388, Comm. Math. Phys. 120 (1989), 575–611. (1989) MR0987770DOI10.1007/BF01260388
  16. Floer, A., 10.4310/jdg/1214443291, . Differential Geom. 30 (1989), 207–221. (1989) MR1001276DOI10.4310/jdg/1214443291
  17. Franks, J., 10.1090/S0002-9947-96-01502-4, Trans. Amer. Math. Soc. 348 (7) (1996), 2637–2662. (1996) MR1325916DOI10.1090/S0002-9947-96-01502-4
  18. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K., Lagrangian intersection Floer theory: anomaly and obstruction. Part I, AMS/IP Studies in Advanced Mathematics, American Mathematical Society, Providence, RI; Internationl Press, Somerville, MA, 2009. (2009) MR2553465
  19. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K., Lagrangian intersection Floer theory: anomaly and obstruction. Part II, AMS/IP Studies in Advanced Mathematics, vol. 46, American Mathematical Society, Providence, RI; Internationl Press, Somerville, MA, 2009. (2009) MR2553465
  20. Fukaya, K., Ono, K., 10.1016/S0040-9383(98)00042-1, Topology 38 (5) (1999), 933–1048. (1999) MR1688434DOI10.1016/S0040-9383(98)00042-1
  21. Fukaya, K., Ono, K., Arnold conjecture and Gromov-Witten invariant for general symplectic manifolds, The Arnoldfest. Proceedings of a conference in honour of V. I. Arnold for his 60th birthday, Toronto, Canada, June 15-21, 1997 (al., E. Bierstone (ed.) et, ed.), vol. 24, 1999. (1999) MR1733575
  22. Gompf, R.E., 10.2307/2118554, Ann. of Math. 2 (1995), 527–595. (1995) MR1356781DOI10.2307/2118554
  23. Granja, G., Karshon, Y., Pabiniak, M., Sandon, S., Givental’s non-linear Maslov index on lens spaces, preprint 2017, available at arXiv:1704.05827. 
  24. Gromov, M., 10.1007/BF01388806, Invent. Math. 82 (2) (1985), 307–347. (1985) MR0809718DOI10.1007/BF01388806
  25. Hofer, H., Wysocki, K., Zehnder, E., Polyfold and Fredholm Theory, preprint 2017, available at arXiv:1707.08941v1. 
  26. Hofer, H., Zehnder, E., Symplectic invariants and Hamiltonian dynamics, Birkhäuser Verlag, Basel, xiv+341. MR2797558
  27. Le Calvez, P., 10.1215/S0012-7094-06-13315-X, Duke Math. J. 133 (1) (2006), 125–184. (2006) MR2219272DOI10.1215/S0012-7094-06-13315-X
  28. Liu, G., Tian, G., 10.4310/jdg/1214460936, J. Differential Geom. 49 (1) (1998), 1–74. (1998) MR1642105DOI10.4310/jdg/1214460936
  29. Matsumoto, S., Arnold conjecture for surface homeomorphisms, Proceedings of the French-Japanese Conference Hyperspace Topologies and Applications, (La Bussiere, 1997), vol. 104, 2000, pp. 191–214. (2000) MR1780985
  30. Ono, K., Pajitnov, A., On the fixed points of a Hamiltonian diffeomorphism in presence of fundamental group, Essays in Mathematics and its Applications: In Honor of Vladimir Arnold, Springer, 2016, pp. 199–229. (2016) MR3526921
  31. Perelman, G., The entropy formula for the Ricci flow and its geometric applications, preprint 2002, available at arXiv:0211159. Zbl1130.53001MR4105148
  32. Piunikhin, S., Salamon, D., Schwarz, M., Symplectic Floer-Donaldson theory and quantum cohomology, Contact and symplectic geometry (Cambridge, 1994), Publ. Newton Inst., Cambridge Univ. Press, 1996. (1996) MR1432464
  33. Ruan, Y., Virtual neighborhoods and pseudo-holomorphic curves, Proceedings of 6th Gokova Geometry-Topology Conference, vol. 23, Gokova, 1999. (1999) MR1701645
  34. Rudyak, Yu.B., Oprea, J., 10.1007/PL00004709, Math. Z. 230 (4) (1999), 673–678. (1999) MR1686579DOI10.1007/PL00004709
  35. Salamon, D., Lectures on Floer homology, Symplectic Topology, I.A.S./Park City Math. Series. Am. Math. Soc., Providence. 
  36. Salamon, D.A., Zehnder, E., 10.1002/cpa.3160451004, Comm. Pure Appl. Math. 45 (1992), 1303–1360. (1992) MR1181727DOI10.1002/cpa.3160451004
  37. Sandon, S., On iterated translated points for contactomorphisms of 2 n + 1 and 2 n × S 1 , Internat. J. Math. 23 (2) (2012), 14 pp. (2012) MR2890476
  38. Sandon, S., 10.1007/s10711-012-9741-1, Geom. Dedicata 165 (2013), 95–110. (2013) MR3079344DOI10.1007/s10711-012-9741-1
  39. Schwarz, M., Morse homology, Progress in Math., vol. 111, Birkhäuser, 1993. (1993) MR1239174
  40. Smale, S., 10.2307/2372978, Amer. J. Math. 84 (1962), 387–399. (1962) MR0153022DOI10.2307/2372978
  41. Tervil, B., Translated points for prequantization spaces over monotone toric manifolds, preprint 2018, available at arXiv:1811.09984. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.