Loading [MathJax]/extensions/MathZoom.js
We prove a compactness theorem for holomorphic curves in 4-dimensional symplectizations that have embedded projections to the underlying 3-manifold. It strengthens the cylindrical case of the SFT compactness theorem [BEH+C03] by using intersection theory to show that
degenerations of such sequences never give rise to multiple covers or nodes, so transversality is easily achieved. This has application to the theory of stable finite energy foliations introduced
in [HWZ03], and also suggests a new...
In this note we construct examples of closed connected Legendrian submanifolds in high dimensional contact vector space that admit an arbitrary finite number of topologically distinct infinite families of diffeomorphic, but not Hamiltonian isotopic exact Lagrangian fillings.
In this note we discuss the collection of statements known as Arnold conjecture for Hamiltonian diffeomorphisms of closed symplectic manifolds. We provide an overview of the homological, stable and strong versions of Arnold conjecture for non-degenerate Hamiltonian systems, a few versions of Arnold conjecture for possibly degenerate Hamiltonian systems, the degenerate version of Arnold conjecture for Hamiltonian homeomorphisms and Sandon’s version of Arnold conjecture for contactomorphisms.
The standard techniques of variational calculus are geometrically stated in the ambient of fiber bundles endowed with a (pre)multisymplectic structure. Then, for the corresponding variational equations, conserved quantities (or, what is equivalent, conservation laws), symmetries, Cartan (Noether) symmetries, gauge symmetries and different versions of Noether's theorem are studied in this ambient. In this way, this constitutes a general geometric framework for all these topics that includes, as special...
We prove several results on weak symplectic fillings of contact -manifolds, including: (1) Every weak filling of any planar contact manifold can be deformed to a blow up of a Stein filling. (2) Contact manifolds that have fully separating planar torsion are not weakly fillable—this gives many new examples of contact manifolds without Giroux torsion that have no weak fillings. (3) Weak fillability is preserved under splicing of contact manifolds along symplectic pre-Lagrangian tori—this gives many...
Currently displaying 1 –
5 of
5