Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 3, page 793-804
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNdikubwayo, Innocent. "Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation." Czechoslovak Mathematical Journal 70.3 (2020): 793-804. <http://eudml.org/doc/297200>.
@article{Ndikubwayo2020,
abstract = {This paper establishes the necessary and sufficient conditions for the reality of all the zeros in a polynomial sequence $\lbrace P_i\rbrace _\{i=1\}^\{\infty \}$ generated by a three-term recurrence relation $P_i(x)+ Q_1(x)P_\{i-1\}(x) +Q_2(x) P_\{i-2\}(x)=0$ with the standard initial conditions $P_\{0\}(x)=1, P_\{-1\}(x)=0,$ where $Q_1(x)$ and $Q_2(x)$ are arbitrary real polynomials.},
author = {Ndikubwayo, Innocent},
journal = {Czechoslovak Mathematical Journal},
keywords = {recurrence relation; polynomial sequence; support; real zeros},
language = {eng},
number = {3},
pages = {793-804},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation},
url = {http://eudml.org/doc/297200},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Ndikubwayo, Innocent
TI - Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 793
EP - 804
AB - This paper establishes the necessary and sufficient conditions for the reality of all the zeros in a polynomial sequence $\lbrace P_i\rbrace _{i=1}^{\infty }$ generated by a three-term recurrence relation $P_i(x)+ Q_1(x)P_{i-1}(x) +Q_2(x) P_{i-2}(x)=0$ with the standard initial conditions $P_{0}(x)=1, P_{-1}(x)=0,$ where $Q_1(x)$ and $Q_2(x)$ are arbitrary real polynomials.
LA - eng
KW - recurrence relation; polynomial sequence; support; real zeros
UR - http://eudml.org/doc/297200
ER -
References
top- Beraha, S., Kahane, J., Weiss, N. J., Limits of zeros of recursively defined families of polynomials, Studies in Foundations and Combinatorics Adv. Math., Suppl. Stud. 1, Academic Press, New York (1978), 213-232. (1978) Zbl0477.05034MR0520560
- Biggs, N., 10.1016/S0012-365X(02)00444-2, Discrete Math. 259 (2002), 37-57. (2002) Zbl1008.05060MR1948772DOI10.1016/S0012-365X(02)00444-2
- Brändén, P., 10.1201/b18255-10, Handbook of Enumerative Combinatorics Discrete Mathematics and Its Applications, CRC Press, Boca Raton (2015), 437-483. (2015) Zbl1327.05051MR3409348DOI10.1201/b18255-10
- Carleson, L., Gamelin, T. W., 10.1007/978-1-4612-4364-9, Universitext: Tracts in Mathematics, Springer, New York (1993). (1993) Zbl0782.30022MR1230383DOI10.1007/978-1-4612-4364-9
- Dilcher, K., Stolarsky, K. B., 10.1016/0022-247X(91)90160-2, J. Math. Anal. Appl. 162 (1991), 430-451. (1991) Zbl0748.30007MR1137630DOI10.1016/0022-247X(91)90160-2
- Kostov, V. P., Topics on Hyperbolic Polynomials in One Variable, Panoramas et Synthèses 33, Société Mathématique de France, Paris (2011). (2011) Zbl1259.12001MR2952044
- Kostov, V. P., Shapiro, B., Tyaglov, M., 10.1090/S0002-9939-2010-10778-5, Proc. Am. Math. Soc. 139 (2011), 1625-1635. (2011) Zbl1223.26033MR2763752DOI10.1090/S0002-9939-2010-10778-5
- Rahman, Q. I., Schmeisser, G., Analytic Theory of Polynomials, London Mathematical Society Monographs 26, Oxford University Press, Oxford (2002). (2002) Zbl1072.30006MR1954841
- Tran, K., 10.1016/j.jmaa.2013.08.025, J. Math. Anal. Appl. 410 (2014), 330-340. (2014) Zbl1307.12002MR3109843DOI10.1016/j.jmaa.2013.08.025
- Tran, K., 10.1016/j.jmaa.2014.07.066, J. Math. Anal. Appl. 421 (2015), 878-892. (2015) Zbl1296.30010MR3250512DOI10.1016/j.jmaa.2014.07.066
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.