Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation

Innocent Ndikubwayo

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 3, page 793-804
  • ISSN: 0011-4642

Abstract

top
This paper establishes the necessary and sufficient conditions for the reality of all the zeros in a polynomial sequence { P i } i = 1 generated by a three-term recurrence relation P i ( x ) + Q 1 ( x ) P i - 1 ( x ) + Q 2 ( x ) P i - 2 ( x ) = 0 with the standard initial conditions P 0 ( x ) = 1 , P - 1 ( x ) = 0 , where Q 1 ( x ) and Q 2 ( x ) are arbitrary real polynomials.

How to cite

top

Ndikubwayo, Innocent. "Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation." Czechoslovak Mathematical Journal 70.3 (2020): 793-804. <http://eudml.org/doc/297200>.

@article{Ndikubwayo2020,
abstract = {This paper establishes the necessary and sufficient conditions for the reality of all the zeros in a polynomial sequence $\lbrace P_i\rbrace _\{i=1\}^\{\infty \}$ generated by a three-term recurrence relation $P_i(x)+ Q_1(x)P_\{i-1\}(x) +Q_2(x) P_\{i-2\}(x)=0$ with the standard initial conditions $P_\{0\}(x)=1, P_\{-1\}(x)=0,$ where $Q_1(x)$ and $Q_2(x)$ are arbitrary real polynomials.},
author = {Ndikubwayo, Innocent},
journal = {Czechoslovak Mathematical Journal},
keywords = {recurrence relation; polynomial sequence; support; real zeros},
language = {eng},
number = {3},
pages = {793-804},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation},
url = {http://eudml.org/doc/297200},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Ndikubwayo, Innocent
TI - Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 793
EP - 804
AB - This paper establishes the necessary and sufficient conditions for the reality of all the zeros in a polynomial sequence $\lbrace P_i\rbrace _{i=1}^{\infty }$ generated by a three-term recurrence relation $P_i(x)+ Q_1(x)P_{i-1}(x) +Q_2(x) P_{i-2}(x)=0$ with the standard initial conditions $P_{0}(x)=1, P_{-1}(x)=0,$ where $Q_1(x)$ and $Q_2(x)$ are arbitrary real polynomials.
LA - eng
KW - recurrence relation; polynomial sequence; support; real zeros
UR - http://eudml.org/doc/297200
ER -

References

top
  1. Beraha, S., Kahane, J., Weiss, N. J., Limits of zeros of recursively defined families of polynomials, Studies in Foundations and Combinatorics Adv. Math., Suppl. Stud. 1, Academic Press, New York (1978), 213-232. (1978) Zbl0477.05034MR0520560
  2. Biggs, N., 10.1016/S0012-365X(02)00444-2, Discrete Math. 259 (2002), 37-57. (2002) Zbl1008.05060MR1948772DOI10.1016/S0012-365X(02)00444-2
  3. Brändén, P., 10.1201/b18255-10, Handbook of Enumerative Combinatorics Discrete Mathematics and Its Applications, CRC Press, Boca Raton (2015), 437-483. (2015) Zbl1327.05051MR3409348DOI10.1201/b18255-10
  4. Carleson, L., Gamelin, T. W., 10.1007/978-1-4612-4364-9, Universitext: Tracts in Mathematics, Springer, New York (1993). (1993) Zbl0782.30022MR1230383DOI10.1007/978-1-4612-4364-9
  5. Dilcher, K., Stolarsky, K. B., 10.1016/0022-247X(91)90160-2, J. Math. Anal. Appl. 162 (1991), 430-451. (1991) Zbl0748.30007MR1137630DOI10.1016/0022-247X(91)90160-2
  6. Kostov, V. P., Topics on Hyperbolic Polynomials in One Variable, Panoramas et Synthèses 33, Société Mathématique de France, Paris (2011). (2011) Zbl1259.12001MR2952044
  7. Kostov, V. P., Shapiro, B., Tyaglov, M., 10.1090/S0002-9939-2010-10778-5, Proc. Am. Math. Soc. 139 (2011), 1625-1635. (2011) Zbl1223.26033MR2763752DOI10.1090/S0002-9939-2010-10778-5
  8. Rahman, Q. I., Schmeisser, G., Analytic Theory of Polynomials, London Mathematical Society Monographs 26, Oxford University Press, Oxford (2002). (2002) Zbl1072.30006MR1954841
  9. Tran, K., 10.1016/j.jmaa.2013.08.025, J. Math. Anal. Appl. 410 (2014), 330-340. (2014) Zbl1307.12002MR3109843DOI10.1016/j.jmaa.2013.08.025
  10. Tran, K., 10.1016/j.jmaa.2014.07.066, J. Math. Anal. Appl. 421 (2015), 878-892. (2015) Zbl1296.30010MR3250512DOI10.1016/j.jmaa.2014.07.066

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.