Some results on Poincaré sets
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 3, page 891-903
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTang, Min-wei, and Wu, Zhi-Yi. "Some results on Poincaré sets." Czechoslovak Mathematical Journal 70.3 (2020): 891-903. <http://eudml.org/doc/297222>.
@article{Tang2020,
abstract = {It is known that a set $H$ of positive integers is a Poincaré set (also called intersective set, see I. Ruzsa (1982)) if and only if $\dim _\{\mathcal \{H\}\}(X_\{H\})=0$, where \[ X\_\{H\}:=\biggl \lbrace x=\sum ^\{\infty \}\_\{n=1\} \frac\{x\_\{n\}\}\{2^\{n\}\} \colon x\_\{n\}\in \lbrace 0,1\rbrace , x\_\{n\} x\_\{n+h\}=0 \ \text\{for all\} \ n\ge 1, \ h\in H\biggr \rbrace \]
and $\dim _\{\mathcal \{H\}\}$ denotes the Hausdorff dimension (see C. Bishop, Y. Peres (2017), Theorem 2.5.5). In this paper we study the set $X_H$ by replacing $2$ with $b>2$. It is surprising that there are some new phenomena to be worthy of studying. We study them and give several examples to explain our results.},
author = {Tang, Min-wei, Wu, Zhi-Yi},
journal = {Czechoslovak Mathematical Journal},
keywords = {Poincaré set; homogeneous set; Hausdorff dimension},
language = {eng},
number = {3},
pages = {891-903},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results on Poincaré sets},
url = {http://eudml.org/doc/297222},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Tang, Min-wei
AU - Wu, Zhi-Yi
TI - Some results on Poincaré sets
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 891
EP - 903
AB - It is known that a set $H$ of positive integers is a Poincaré set (also called intersective set, see I. Ruzsa (1982)) if and only if $\dim _{\mathcal {H}}(X_{H})=0$, where \[ X_{H}:=\biggl \lbrace x=\sum ^{\infty }_{n=1} \frac{x_{n}}{2^{n}} \colon x_{n}\in \lbrace 0,1\rbrace , x_{n} x_{n+h}=0 \ \text{for all} \ n\ge 1, \ h\in H\biggr \rbrace \]
and $\dim _{\mathcal {H}}$ denotes the Hausdorff dimension (see C. Bishop, Y. Peres (2017), Theorem 2.5.5). In this paper we study the set $X_H$ by replacing $2$ with $b>2$. It is surprising that there are some new phenomena to be worthy of studying. We study them and give several examples to explain our results.
LA - eng
KW - Poincaré set; homogeneous set; Hausdorff dimension
UR - http://eudml.org/doc/297222
ER -
References
top- Bergelson, V., Lesigne, E., 10.4064/cm110-1-1, Colloq. Math. 110 (2008), 1-49. (2008) Zbl1177.37018MR2353898DOI10.4064/cm110-1-1
- Bishop, C. J., Peres, Y., 10.1017/9781316460238, Cambridge Studies in Advanced Mathematics 162, Cambridge University Press, Cambridge (2017). (2017) Zbl1390.28012MR3616046DOI10.1017/9781316460238
- Bourgain, J., 10.1007/BF02787258, Isr. J. Math. 59 (1987), 150-166. (1987) Zbl0643.10045MR0920079DOI10.1007/BF02787258
- Falconer, K., 10.1002/0470013850, Wiley, New York (2003). (2003) Zbl1060.28005MR2118797DOI10.1002/0470013850
- Furstenberg, H., 10.1007/BF02813304, J. Anal. Math. 31 (1977), 204-256. (1977) Zbl0347.28016MR0498471DOI10.1007/BF02813304
- Furstenberg, H., 10.1515/9781400855162, Princenton University Press, Princenton (1981). (1981) Zbl0459.28023MR603625DOI10.1515/9781400855162
- Ireland, K., Rosen, M., 10.1007/978-1-4757-2103-4, Graduate Texts in Mathematics 84, Springer, New York (1990). (1990) Zbl0712.11001MR1070716DOI10.1007/978-1-4757-2103-4
- Kamae, T., France, M. Mendès, 10.1007/BF02761498, Isr. J. Math. 31 (1978), 335-342. (1978) Zbl0396.10040MR516154DOI10.1007/BF02761498
- Lê, T. H., 10.1007/978-1-4939-1601-6_9, Combinatorial and Additive Number Theory---CANT 2011 Springer Proceedings in Mathematics & Statistics 101, Springer, New York (2014), 115-128. (2014) Zbl1371.11028MR3297075DOI10.1007/978-1-4939-1601-6_9
- Montgomery, H. L., 10.1090/cbms/084, CBMS Regional Conference Series in Mathematics 84, American Mathematical Society, Providence (1994). (1994) Zbl0814.11001MR1297543DOI10.1090/cbms/084
- Ruzsa, I. Z., Uniform distribution, positive trigonometric polynomials and difference sets, Sémin. Théor. Nombres, Univ. Bordeaux I. (1982), Article ID 18, 18 pages. (1982) Zbl0515.10048MR0695335
- Sárközy, A., 10.1007/BF01896079, Acta Math. Acad. Sci. Hung. 31 (1978), 125-149. (1978) Zbl0387.10033MR466059DOI10.1007/BF01896079
- Sárközy, A., On difference sets of sequences of integers II, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 21 (1978), 45-53. (1978) Zbl0413.10051MR536201
- Sárközy, A., 10.1007/BF01901984, Acta Math. Acad. Sci. Hung. 31 (1978), 355-386. (1978) Zbl0387.10034MR487031DOI10.1007/BF01901984
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.