Deformations of Metrics and Biharmonic Maps

Aicha Benkartab; Ahmed Mohammed Cherif

Communications in Mathematics (2020)

  • Volume: 28, Issue: 3, page 263-275
  • ISSN: 1804-1388

Abstract

top
We construct biharmonic non-harmonic maps between Riemannian manifolds ( M , g ) and ( N , h ) by first making the ansatz that ϕ : ( M , g ) ( N , h ) be a harmonic map and then deforming the metric on N by h ˜ α = α h + ( 1 - α ) d f d f to render ϕ biharmonic, where f is a smooth function with gradient of constant norm on ( N , h ) and α ( 0 , 1 ) . We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.

How to cite

top

Benkartab, Aicha, and Cherif, Ahmed Mohammed. "Deformations of Metrics and Biharmonic Maps." Communications in Mathematics 28.3 (2020): 263-275. <http://eudml.org/doc/297226>.

@article{Benkartab2020,
abstract = {We construct biharmonic non-harmonic maps between Riemannian manifolds $(M,g)$ and $(N,h)$ by first making the ansatz that $\varphi \colon (M,g) \rightarrow (N,h)$ be a harmonic map and then deforming the metric on $N$ by \[\tilde\{h\}\_\{\alpha \}=\alpha h+(1-\alpha )df\otimes df\] to render $\varphi $ biharmonic, where $f$ is a smooth function with gradient of constant norm on $(N,h)$ and $\alpha \in (0,1)$. We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.},
author = {Benkartab, Aicha, Cherif, Ahmed Mohammed},
journal = {Communications in Mathematics},
keywords = {Riemannian geometry; Harmonic maps; Biharmonic maps},
language = {eng},
number = {3},
pages = {263-275},
publisher = {University of Ostrava},
title = {Deformations of Metrics and Biharmonic Maps},
url = {http://eudml.org/doc/297226},
volume = {28},
year = {2020},
}

TY - JOUR
AU - Benkartab, Aicha
AU - Cherif, Ahmed Mohammed
TI - Deformations of Metrics and Biharmonic Maps
JO - Communications in Mathematics
PY - 2020
PB - University of Ostrava
VL - 28
IS - 3
SP - 263
EP - 275
AB - We construct biharmonic non-harmonic maps between Riemannian manifolds $(M,g)$ and $(N,h)$ by first making the ansatz that $\varphi \colon (M,g) \rightarrow (N,h)$ be a harmonic map and then deforming the metric on $N$ by \[\tilde{h}_{\alpha }=\alpha h+(1-\alpha )df\otimes df\] to render $\varphi $ biharmonic, where $f$ is a smooth function with gradient of constant norm on $(N,h)$ and $\alpha \in (0,1)$. We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.
LA - eng
KW - Riemannian geometry; Harmonic maps; Biharmonic maps
UR - http://eudml.org/doc/297226
ER -

References

top
  1. Baird, P., Fardoun, A., Ouakkas, S., 10.1007/s10455-008-9118-8, Annals of Global Analysis and Geometry, 34, 4, 2008, 403-414, Springer, (2008) MR2447908DOI10.1007/s10455-008-9118-8
  2. Baird, P., Kamissoko, D., 10.1023/A:1021213930520, Annals of Global Analysis and Geometry, 23, 1, 2003, 65-75, Springer, (2003) MR1952859DOI10.1023/A:1021213930520
  3. Baird, P., Wood, J.C., Harmonic morphisms between Riemannian manifolds, 29, 2003, Oxford University Press, (2003) MR2044031
  4. Benkartab, A., Cherif, A.M., New methods of construction for biharmonic maps, Kyungpook Mathematical Journal, 59, 1, 2019, 135-147, Department of Mathematics, Kyungpook National University, (2019) MR3946694
  5. Caddeo, R., Montaldo, S., Oniciuc, C., Biharmonic submanifolds of 𝕊 3 , International Journal of Mathematics, 12, 08, 2001, 867-876, World Scientific, (2001) MR1863283
  6. Eells, J., Lemaire, L., 10.1112/blms/10.1.1, Bulletin of the London Mathematical Society, 10, 1, 1978, 1-68, Citeseer, (1978) Zbl0401.58003MR0495450DOI10.1112/blms/10.1.1
  7. Eells, J., Lemaire, L., 10.1112/blms/20.5.385, Bulletin of the London Mathematical Society, 20, 5, 1988, 385-524, Oxford University Press, (1988) Zbl0669.58009MR0956352DOI10.1112/blms/20.5.385
  8. Eells, J., Sampson, J.H., 10.2307/2373037, American Journal of Mathematics, 86, 1, 1964, 109-160, JSTOR, (1964) Zbl0122.40102MR0164306DOI10.2307/2373037
  9. K{ö}rpinar, T., Turhan, E., Tubular surfaces around timelike biharmonic curves in Lorentzian Heisenberg group Heis 3 , Analele Universitatii ``Ovidius" Constanta -- Seria Matematica, 20, 1, 2012, 431-446, Sciendo, (2012) MR2928433
  10. Oniciuc, C., 10.4064/cm97-1-12, Colloquium Mathematicum, 97, 1, 2003, 131-139, (2003) MR2010548DOI10.4064/cm97-1-12
  11. Ouakkas, S., 10.1016/j.difgeo.2008.04.006, Differential Geometry and its Applications, 26, 5, 2008, 495-502, Elsevier, (2008) MR2458275DOI10.1016/j.difgeo.2008.04.006
  12. Jiang, G.Y., 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A, 7, 4, 1986, 389-402, (1986) MR0886529
  13. O'Neill, B., Semi-Riemannian geometry with applications to relativity, 1983, Academic Press, (1983) MR0719023
  14. Sakai, T., Riemannian geometry, 1992, Shokabo, Tokyo, (in Japanese). (1992) MR1390760

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.