Deformations of Metrics and Biharmonic Maps
Aicha Benkartab; Ahmed Mohammed Cherif
Communications in Mathematics (2020)
- Volume: 28, Issue: 3, page 263-275
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topBenkartab, Aicha, and Cherif, Ahmed Mohammed. "Deformations of Metrics and Biharmonic Maps." Communications in Mathematics 28.3 (2020): 263-275. <http://eudml.org/doc/297226>.
@article{Benkartab2020,
abstract = {We construct biharmonic non-harmonic maps between Riemannian manifolds $(M,g)$ and $(N,h)$ by first making the ansatz that $\varphi \colon (M,g) \rightarrow (N,h)$ be a harmonic map and then deforming the metric on $N$ by \[\tilde\{h\}\_\{\alpha \}=\alpha h+(1-\alpha )df\otimes df\]
to render $\varphi $ biharmonic, where $f$ is a smooth function with gradient of constant norm on $(N,h)$ and $\alpha \in (0,1)$. We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.},
author = {Benkartab, Aicha, Cherif, Ahmed Mohammed},
journal = {Communications in Mathematics},
keywords = {Riemannian geometry; Harmonic maps; Biharmonic maps},
language = {eng},
number = {3},
pages = {263-275},
publisher = {University of Ostrava},
title = {Deformations of Metrics and Biharmonic Maps},
url = {http://eudml.org/doc/297226},
volume = {28},
year = {2020},
}
TY - JOUR
AU - Benkartab, Aicha
AU - Cherif, Ahmed Mohammed
TI - Deformations of Metrics and Biharmonic Maps
JO - Communications in Mathematics
PY - 2020
PB - University of Ostrava
VL - 28
IS - 3
SP - 263
EP - 275
AB - We construct biharmonic non-harmonic maps between Riemannian manifolds $(M,g)$ and $(N,h)$ by first making the ansatz that $\varphi \colon (M,g) \rightarrow (N,h)$ be a harmonic map and then deforming the metric on $N$ by \[\tilde{h}_{\alpha }=\alpha h+(1-\alpha )df\otimes df\]
to render $\varphi $ biharmonic, where $f$ is a smooth function with gradient of constant norm on $(N,h)$ and $\alpha \in (0,1)$. We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.
LA - eng
KW - Riemannian geometry; Harmonic maps; Biharmonic maps
UR - http://eudml.org/doc/297226
ER -
References
top- Baird, P., Fardoun, A., Ouakkas, S., 10.1007/s10455-008-9118-8, Annals of Global Analysis and Geometry, 34, 4, 2008, 403-414, Springer, (2008) MR2447908DOI10.1007/s10455-008-9118-8
- Baird, P., Kamissoko, D., 10.1023/A:1021213930520, Annals of Global Analysis and Geometry, 23, 1, 2003, 65-75, Springer, (2003) MR1952859DOI10.1023/A:1021213930520
- Baird, P., Wood, J.C., Harmonic morphisms between Riemannian manifolds, 29, 2003, Oxford University Press, (2003) MR2044031
- Benkartab, A., Cherif, A.M., New methods of construction for biharmonic maps, Kyungpook Mathematical Journal, 59, 1, 2019, 135-147, Department of Mathematics, Kyungpook National University, (2019) MR3946694
- Caddeo, R., Montaldo, S., Oniciuc, C., Biharmonic submanifolds of , International Journal of Mathematics, 12, 08, 2001, 867-876, World Scientific, (2001) MR1863283
- Eells, J., Lemaire, L., 10.1112/blms/10.1.1, Bulletin of the London Mathematical Society, 10, 1, 1978, 1-68, Citeseer, (1978) Zbl0401.58003MR0495450DOI10.1112/blms/10.1.1
- Eells, J., Lemaire, L., 10.1112/blms/20.5.385, Bulletin of the London Mathematical Society, 20, 5, 1988, 385-524, Oxford University Press, (1988) Zbl0669.58009MR0956352DOI10.1112/blms/20.5.385
- Eells, J., Sampson, J.H., 10.2307/2373037, American Journal of Mathematics, 86, 1, 1964, 109-160, JSTOR, (1964) Zbl0122.40102MR0164306DOI10.2307/2373037
- K{ö}rpinar, T., Turhan, E., Tubular surfaces around timelike biharmonic curves in Lorentzian Heisenberg group , Analele Universitatii ``Ovidius" Constanta -- Seria Matematica, 20, 1, 2012, 431-446, Sciendo, (2012) MR2928433
- Oniciuc, C., 10.4064/cm97-1-12, Colloquium Mathematicum, 97, 1, 2003, 131-139, (2003) MR2010548DOI10.4064/cm97-1-12
- Ouakkas, S., 10.1016/j.difgeo.2008.04.006, Differential Geometry and its Applications, 26, 5, 2008, 495-502, Elsevier, (2008) MR2458275DOI10.1016/j.difgeo.2008.04.006
- Jiang, G.Y., 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A, 7, 4, 1986, 389-402, (1986) MR0886529
- O'Neill, B., Semi-Riemannian geometry with applications to relativity, 1983, Academic Press, (1983) MR0719023
- Sakai, T., Riemannian geometry, 1992, Shokabo, Tokyo, (in Japanese). (1992) MR1390760
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.