Displaying similar documents to “Deformations of Metrics and Biharmonic Maps”

Harmonie reflections

Lieven Vanhecke, Maria-Elena Vazquez-Abal (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

We study local reflections ϕ σ with respect to a curve σ in a Riemannian manifold and prove that σ is a geodesic if ϕ σ is a harmonic map. Moreover, we prove that the Riemannian manifold has constant curvature if and only if ϕ σ is harmonic for all geodesies σ .

On the dimension of p -harmonic measure in space

John L. Lewis, Kaj Nyström, Andrew Vogel (2013)

Journal of the European Mathematical Society

Similarity:

Let Ω n , n 3 , and let p , 1 < p < , p 2 , be given. In this paper we study the dimension of p -harmonic measures that arise from non-negative solutions to the p -Laplace equation, vanishing on a portion of Ω , in the setting of δ -Reifenberg flat domains. We prove, for p n , that there exists δ ˜ = δ ˜ ( p , n ) > 0 small such that if Ω is a δ -Reifenberg flat domain with δ < δ ˜ , then p -harmonic measure is concentrated on a set of σ -finite H n 1 -measure. We prove, for p n , that for sufficiently flat Wolff snowflakes the Hausdorff dimension of p -harmonic...

A compactness result for polyharmonic maps in the critical dimension

Shenzhou Zheng (2016)

Czechoslovak Mathematical Journal

Similarity:

For n = 2 m 4 , let Ω n be a bounded smooth domain and 𝒩 L a compact smooth Riemannian manifold without boundary. Suppose that { u k } W m , 2 ( Ω , 𝒩 ) is a sequence of weak solutions in the critical dimension to the perturbed m -polyharmonic maps d d t | t = 0 E m ( Π ( u + t ξ ) ) = 0 with Φ k 0 in ( W m , 2 ( Ω , 𝒩 ) ) * and u k u weakly in W m , 2 ( Ω , 𝒩 ) . Then u is an m -polyharmonic map. In particular, the space of m -polyharmonic maps is sequentially compact for the weak- W m , 2 topology.

The harmonic Cesáro and Copson operators on the spaces L p ( ) , 1 ≤ p ≤ 2

Ferenc Móricz (2002)

Studia Mathematica

Similarity:

The harmonic Cesàro operator is defined for a function f in L p ( ) for some 1 ≤ p < ∞ by setting ( f ) ( x ) : = x ( f ( u ) / u ) d u for x > 0 and ( f ) ( x ) : = - - x ( f ( u ) / u ) d u for x < 0; the harmonic Copson operator ℂ* is defined for a function f in L ¹ l o c ( ) by setting * ( f ) ( x ) : = ( 1 / x ) x f ( u ) d u for x ≠ 0. The notation indicates that ℂ and ℂ* are adjoint operators in a certain sense. We present rigorous proofs of the following two commuting relations: (i) If f L p ( ) for some 1 ≤ p ≤ 2, then ( ( f ) ) ( t ) = * ( f ̂ ) ( t ) a.e., where f̂ denotes the Fourier transform of f. (ii) If f L p ( ) for some 1 < p ≤ 2, then...

On the characterization of harmonic functions with initial data in Morrey space

Bo Li, Jinxia Li, Bolin Ma, Tianjun Shen (2024)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , d , μ ) be a metric measure space satisfying the doubling condition and an L 2 -Poincaré inequality. Consider the nonnegative operator generalized by a Dirichlet form on X . We will show that a solution u to ( - t 2 + ) u = 0 on X × + satisfies an α -Carleson condition if and only if u can be represented as the Poisson integral of the operator with the trace in the generalized Morrey space L 2 , α ( X ) , where α is a nonnegative function defined on a class of balls in X . This result extends the analogous characterization...

The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds

Jan Kurek, Włodzimierz Mikulski (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

If ( M , g ) is a Riemannian manifold, we have the well-known base preserving   vector bundle isomorphism T M = ˜ T * M given by v g ( v , - ) between the tangent T M and the cotangent T * M bundles of M . In the present note, we generalize this isomorphism to the one T ( r ) M = ˜ T r * M between the r -th order vector tangent T ( r ) M = ( J r ( M , R ) 0 ) * and the r -th order cotangent T r * M = J r ( M , R ) 0 bundles of M . Next, we describe all base preserving  vector bundle maps C M ( g ) : T ( r ) M T r * M depending on a Riemannian metric g in terms of natural (in g ) tensor fields on M .

Natural pseudodistances between closed surfaces

Pietro Donatini, Patrizio Frosini (2007)

Journal of the European Mathematical Society

Similarity:

Let us consider two closed surfaces , 𝒩 of class C 1 and two functions ϕ : , ψ : 𝒩 of class C 1 , called measuring functions. The natural pseudodistance d between the pairs ( , ) , ( 𝒩 , ψ ) is defined as the infimum of Θ ( f ) : = max P | ϕ ( P ) ψ ( f ( P ) ) | as f varies in the set of all homeomorphisms from onto 𝒩 . In this paper we prove that the natural pseudodistance equals either | c 1 c 2 | , 1 2 | c 1 c 2 | , or 1 3 | c 1 c 2 | , where c 1 and c 2 are two suitable critical values of the measuring functions. This shows that a previous relation between the natural pseudodistance and...

Finite-dimensional maps and dendrites with dense sets of end points

Hisao Kato, Eiichi Matsuhashi (2006)

Colloquium Mathematicae

Similarity:

The first author has recently proved that if f: X → Y is a k-dimensional map between compacta and Y is p-dimensional (0 ≤ k, p < ∞), then for each 0 ≤ i ≤ p + k, the set of maps g in the space C ( X , I p + 2 k + 1 - i ) such that the diagonal product f × g : X Y × I p + 2 k + 1 - i is an (i+1)-to-1 map is a dense G δ -subset of C ( X , I p + 2 k + 1 - i ) . In this paper, we prove that if f: X → Y is as above and D j (j = 1,..., k) are superdendrites, then the set of maps h in C ( X , j = 1 k D j × I p + 1 - i ) such that f × h : X Y × ( j = 1 k D j × I p + 1 - i ) is (i+1)-to-1 is a dense G δ -subset of C ( X , j = 1 k D j × I p + 1 - i ) for each 0 ≤ i ≤ p.

Injectivity of sections of convex harmonic mappings and convolution theorems

Liulan Li, Saminathan Ponnusamy (2016)

Czechoslovak Mathematical Journal

Similarity:

We consider the class 0 of sense-preserving harmonic functions f = h + g ¯ defined in the unit disk | z | < 1 and normalized so that h ( 0 ) = 0 = h ' ( 0 ) - 1 and g ( 0 ) = 0 = g ' ( 0 ) , where h and g are analytic in the unit disk. In the first part of the article we present two classes 𝒫 H 0 ( α ) and 𝒢 H 0 ( β ) of functions from 0 and show that if f 𝒫 H 0 ( α ) and F 𝒢 H 0 ( β ) , then the harmonic convolution is a univalent and close-to-convex harmonic function in the unit disk provided certain conditions for parameters α and β are satisfied. In the second part we study the harmonic sections...

On open maps and related functions over the Salbany compactification

Mbekezeli Nxumalo (2024)

Archivum Mathematicum

Similarity:

Given a topological space X , let 𝒰 X and η X : X 𝒰 X denote, respectively, the Salbany compactification of X and the compactification map called the Salbany map of X . For every continuous function f : X Y , there is a continuous function 𝒰 f : 𝒰 X 𝒰 Y , called the Salbany lift of f , satisfying ( 𝒰 f ) η X = η Y f . If a continuous function f : X Y has a stably compact codomain Y , then there is a Salbany extension F : 𝒰 X Y of f , not necessarily unique, such that F η X = f . In this paper, we give a condition on a space such that its Salbany map is open. In...

A Weighted Eigenvalue Problems Driven by both p ( · ) -Harmonic and p ( · ) -Biharmonic Operators

Mohamed Laghzal, Abdelouahed El Khalil, Abdelfattah Touzani (2021)

Communications in Mathematics

Similarity:

The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both p ( · ) -Harmonic and p ( · ) -biharmonic operators Δ p ( x ) 2 u - Δ p ( x ) u = λ w ( x ) | u | q ( x ) - 2 u in Ω , u W 2 , p ( · ) ( Ω ) W 0 1 , p ( · ) ( Ω ) , is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces L p ( · ) ( Ω ) and W m , p ( · ) ( Ω ) .

Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps

Viviane Baladi, Daniel Smania (2012)

Annales scientifiques de l'École Normale Supérieure

Similarity:

We consider C 2 families t f t of  C 4 unimodal maps f t whose critical point is slowly recurrent, and we show that the unique absolutely continuous invariant measure μ t of  f t depends differentiably on  t , as a distribution of order 1 . The proof uses transfer operators on towers whose level boundaries are mollified via smooth cutoff functions, in order to avoid artificial discontinuities. We give a new representation of  μ t for a Benedicks-Carleson map f t , in terms of a single smooth function and the...

On the potential theory of some systems of coupled PDEs

Abderrahim Aslimani, Imad El Ghazi, Mohamed El Kadiri, Sabah Haddad (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we study some potential theoretical properties of solutions and super-solutions of some PDE systems (S) of type L 1 u = - μ 1 v , L 2 v = - μ 2 u , on a domain D of d , where μ 1 and μ 2 are suitable measures on D , and L 1 , L 2 are two second order linear differential elliptic operators on D with coefficients of class 𝒞 . We also obtain the integral representation of the nonnegative solutions and supersolutions of the system (S) by means of the Green kernels and Martin boundaries associated with L 1 and L 2 , and...

A characterization of the Riemann extension in terms of harmonicity

Cornelia-Livia Bejan, Şemsi Eken (2017)

Czechoslovak Mathematical Journal

Similarity:

If ( M , ) is a manifold with a symmetric linear connection, then T * M can be endowed with the natural Riemann extension g ¯ (O. Kowalski and M. Sekizawa (2011), M. Sekizawa (1987)). Here we continue to study the harmonicity with respect to g ¯ initiated by C. L. Bejan and O. Kowalski (2015). More precisely, we first construct a canonical almost para-complex structure 𝒫 on ( T * M , g ¯ ) and prove that 𝒫 is harmonic (in the sense of E. García-Río, L. Vanhecke and M. E. Vázquez-Abal (1997)) if and only if g ¯ reduces...

On a result by Clunie and Sheil-Small

Dariusz Partyka, Ken-ichi Sakan (2012)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In 1984 J. Clunie and T. Sheil-Small proved ([2, Corollary 5.8]) that for any complex-valued and sense-preserving injective harmonic mapping F in the unit disk 𝔻 , if F ( 𝔻 ) is a convex domain, then the inequality | G ( z 2 ) - G ( z 1 ) | < | H ( z 2 ) - H ( z 1 ) | holds for all distinct points z 1 , z 2 𝔻 . Here H and G are holomorphic mappings in 𝔻 determined by F = H + G ¯ , up to a constant function. We extend this inequality by replacing the unit disk by an arbitrary nonempty domain Ω in and improve it provided F is additionally a quasiconformal mapping...