Topology design for group consensus in directed multi-agent systems

Onur Cihan

Kybernetika (2020)

  • Volume: 56, Issue: 3, page 578-597
  • ISSN: 0023-5954

Abstract

top
In this paper, we investigate the grouping behavior of multi-agent systems by exploiting the graph structure. We propose a novel algorithm for designing a network from scratch which yields the desired grouping in a network of agents utilizing a consensus-based algorithm. The proposed algorithm is shown to be optimal in the sense that it consists of the minimum number of links. Furthermore, we examine the effect of adding new vertices and edges to the network on the number of groups formed in the group consensus problem. These results can be further utilized by the network topology designer to restructure the network and achieve the desired grouping. Theoretical results are illustrated with simulation examples.

How to cite

top

Cihan, Onur. "Topology design for group consensus in directed multi-agent systems." Kybernetika 56.3 (2020): 578-597. <http://eudml.org/doc/297232>.

@article{Cihan2020,
abstract = {In this paper, we investigate the grouping behavior of multi-agent systems by exploiting the graph structure. We propose a novel algorithm for designing a network from scratch which yields the desired grouping in a network of agents utilizing a consensus-based algorithm. The proposed algorithm is shown to be optimal in the sense that it consists of the minimum number of links. Furthermore, we examine the effect of adding new vertices and edges to the network on the number of groups formed in the group consensus problem. These results can be further utilized by the network topology designer to restructure the network and achieve the desired grouping. Theoretical results are illustrated with simulation examples.},
author = {Cihan, Onur},
journal = {Kybernetika},
keywords = {group consensus; topology design; multi-agent agreement},
language = {eng},
number = {3},
pages = {578-597},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Topology design for group consensus in directed multi-agent systems},
url = {http://eudml.org/doc/297232},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Cihan, Onur
TI - Topology design for group consensus in directed multi-agent systems
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 3
SP - 578
EP - 597
AB - In this paper, we investigate the grouping behavior of multi-agent systems by exploiting the graph structure. We propose a novel algorithm for designing a network from scratch which yields the desired grouping in a network of agents utilizing a consensus-based algorithm. The proposed algorithm is shown to be optimal in the sense that it consists of the minimum number of links. Furthermore, we examine the effect of adding new vertices and edges to the network on the number of groups formed in the group consensus problem. These results can be further utilized by the network topology designer to restructure the network and achieve the desired grouping. Theoretical results are illustrated with simulation examples.
LA - eng
KW - group consensus; topology design; multi-agent agreement
UR - http://eudml.org/doc/297232
ER -

References

top
  1. Alonso-Mora, J., Montijano, E., Nägeli, T., Hilliges, O., Schwager, M., Rus, D., 10.1007/s10514-018-9783-9, Auton. Robot. 43 (2018), 1079-1100. DOI10.1007/s10514-018-9783-9
  2. Amelina, N., Fradkov, A., Jiang, Y., Vergados, D. J., 10.1109/tit.2015.2406323, IEEE Trans. Inform. Theory 61 (2015), 1739-1752. MR3332977DOI10.1109/tit.2015.2406323
  3. Aragues, R., Cortes, J., Sagues, C., 10.1109/tro.2012.2192012, IEEE Trans. Robot. 28 (2012), 840-854. DOI10.1109/tro.2012.2192012
  4. Cao, Y., Stuart, D., Ren, W., Meng, Z., 10.1109/tcst.2010.2053542, IEEE Trans. Control Syst. Technol. 19, (2011), 929-938. MR2926750DOI10.1109/tcst.2010.2053542
  5. Chen, Z., Xing, Y., Qin, H., 10.14736/kyb-2019-4-0714, Kybernetika 55 (2019), 714-726. MR4043544DOI10.14736/kyb-2019-4-0714
  6. Choi, H.-L., Brune, L., How, J., 10.1109/tro.2009.2022423, IEEE Trans. Robot. 25 (2009), 912-926. DOI10.1109/tro.2009.2022423
  7. Develer, Ü., Akar, M., 10.1080/00207179.2019.1625446, Int. J. Control (2019). DOI10.1080/00207179.2019.1625446
  8. Dimarogonas, D. V., Kyriakopoulos, K. J., 10.1109/tac.2007.895897, IEEE Trans. Automat. Control 52 (2007), 916-922. MR2324255DOI10.1109/tac.2007.895897
  9. Erkan, Ö. F., Cihan, O., Akar, M., 10.23919/acc.2017.7963678, In: 2017 American Control Conference, Seattle 2017. DOI10.23919/acc.2017.7963678
  10. Erkan, Ö. F., Cihan, O., Akar, M., 10.1016/j.jfranklin.2017.10.028, J. Franklin Inst. 355 (2018), 332-360. MR3739592DOI10.1016/j.jfranklin.2017.10.028
  11. Hegselmann, R., Krause, U., Opinion dynamics and bounded confidence: Models, analysis and simulation., J. Artif. Soc. Soc. Simul. 5 (2002). 
  12. Hu, J., 10.1155/2014/689070, Abstr. Appl. Anal. Article ID: 689070 (2014), 1-9. MR3226221DOI10.1155/2014/689070
  13. Hu, J., Zheng, W.-X., 10.1016/j.physleta.2014.04.070, Phys. Lett. A 378 (2014), 1787-1796. MR3209873DOI10.1016/j.physleta.2014.04.070
  14. Jin, J., Gans, N., 10.1016/j.robot.2017.05.008, Rob. Auton. Syst. 95 (2017), 25-36. DOI10.1016/j.robot.2017.05.008
  15. Mirzaei, M., Atrianfar, H., Mehdipour, N., Abdollahi, F., 10.1016/j.robot.2016.05.014, Rob. Auton. Syst. 83 (2016), 106-114. DOI10.1016/j.robot.2016.05.014
  16. Mou, S., Liu, J., Morse, A. S., 10.1109/tac.2015.2414771, IEEE Trans. Automat. Control 60 (2015), 2863-2878. MR3419577DOI10.1109/tac.2015.2414771
  17. Navarro, I., Matía, F., 10.1007/s10514-012-9300-5, Auton. Robot. 33 (2012), 445-465. DOI10.1007/s10514-012-9300-5
  18. Olfati-Saber, R., Murray, R. M., 10.1109/tac.2004.834113, IEEE Trans. Automat. Control 49 (2004), 1520-1533. MR2086916DOI10.1109/tac.2004.834113
  19. Ren, W., Beard, R., 10.1109/tac.2005.846556, IEEE Trans. Automat. Control 50 (2005), 655-661. MR2141568DOI10.1109/tac.2005.846556
  20. Schenato, L., Fiorentin, F., 10.1016/j.automatica.2011.06.012, Automatica 47 (2011), 1878-1886. MR2886799DOI10.1016/j.automatica.2011.06.012
  21. Xu, Z., Cai, X., 10.1016/j.ins.2010.08.002, Inform. Sci. 181 (2011), 150-162. DOI10.1016/j.ins.2010.08.002
  22. Yang, S., Tan, S., Xu, J.-X., 10.1109/tpwrs.2013.2271640, IEEE Trans. Power Syst. 28 (2013), 4416-4426. DOI10.1109/tpwrs.2013.2271640
  23. Zelazo, D., Schuler, S., Allgöwer, F., 10.1016/j.sysconle.2012.10.014, Syst. Control. Lett. 62 (2013), 85-96. MR3016120DOI10.1016/j.sysconle.2012.10.014
  24. Zhang, H.-T., Chen, Z., Mo, X., 10.1109/tac.2017.2692527, IEEE Trans. Automat. Control 62 (2017), 4891-4897. MR3691919DOI10.1109/tac.2017.2692527
  25. Zhang, X., Peng, Z., Yang, S., Wen, G., Rahmani, A., 10.1080/00207179.2019.1590646, Int. J. Control (2019). DOI10.1080/00207179.2019.1590646
  26. Zhu, Q., Wang, X., Lin, Q., 10.14736/kyb-2017-4-0563, Kybernetika 53 (2017), 563-577. MR3730252DOI10.14736/kyb-2017-4-0563

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.