Page 1 Next

Displaying 1 – 20 of 90

Showing per page

A biologically inspired approach to feasible gait learning for a hexapod robot

Dominik Belter, Piotr Skrzypczyński (2010)

International Journal of Applied Mathematics and Computer Science

The objective of this paper is to develop feasible gait patterns that could be used to control a real hexapod walking robot. These gaits should enable the fastest movement that is possible with the given robot's mechanics and drives on a flat terrain. Biological inspirations are commonly used in the design of walking robots and their control algorithms. However, legged robots differ significantly from their biological counterparts. Hence we believe that gait patterns should be learned using the...

A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators

Ignacy Dulęba, Michał Opałka (2013)

International Journal of Applied Mathematics and Computer Science

The objective of this paper is to present and make a comparative study of several inverse kinematics methods for serial manipulators, based on the Jacobian matrix. Besides the well-known Jacobian transpose and Jacobian pseudo-inverse methods, three others, borrowed from numerical analysis, are presented. Among them, two approximation methods avoid the explicit manipulability matrix inversion, while the third one is a slightly modified version of the Levenberg-Marquardt method (mLM). Their comparison...

A continuation method for motion-planning problems

Yacine Chitour (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We apply the well-known homotopy continuation method to address the motion planning problem (MPP) for smooth driftless control-affine systems. The homotopy continuation method is a Newton-type procedure to effectively determine functions only defined implicitly. That approach requires first to characterize the singularities of a surjective map and next to prove global existence for the solution of an ordinary differential equation, the Wazewski equation. In the context of the MPP, the aforementioned...

A continuation method for motion-planning problems

Yacine Chitour (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We apply the well-known homotopy continuation method to address the motion planning problem (MPP) for smooth driftless control-affine systems. The homotopy continuation method is a Newton-type procedure to effectively determine functions only defined implicitly. That approach requires first to characterize the singularities of a surjective map and next to prove global existence for the solution of an ordinary differential equation, the Wazewski equation. In the context of the MPP, the aforementioned...

A family of hyperbolic-type control schemes for robot manipulators

Fernando Reyes-Cortes, Olga Felix-Beltran, Jaime Cid-Monjaraz, Gweni Alonso-Aruffo (2019)

Kybernetika

This paper deals with the global position control problem of robot manipulators in joint space, a new family of control schemes consisting of a suitable combination of hyperbolic functions is presented. The proposed control family includes a large class of bounded hyperbolic-type control schemes to drive both position error and derivative action terms plus gravity compensation. To ensure global asymptotic stability of closed-loop system equilibrium point, we propose an energy-shaping based strict...

A generalised proportional-derivative force/vision controller for torque-driven planar robotic manipulators

Carlos Vidrios-Serrano, Marco Mendoza, Isela Bonilla, Berenice Maldonado-Fregoso (2020)

Kybernetika

In this paper, a family of hybrid control algorithms is presented; where it is merged a free camera-calibration image-based control scheme and a direct force controller, both with the same priority level. The aim of this generalised hybrid controller is to regulate the robot-environment interaction into a two-dimensional task-space. The design of the proposed control structure takes into account most of the dynamic effects present in robot manipulators whose inputs are torque signals. As examples...

A geometric algorithm for the output functional controllability in general manipulation systems and mechanisms

Paolo Mercorelli (2012)

Kybernetika

In this paper the control of robotic manipulation is investigated. Manipulation system analysis and control are approached in a general framework. The geometric aspect of manipulation system dynamics is strongly emphasized by using the well developed techniques of geometric multivariable control theory. The focus is on the (functional) control of the crucial outputs in robotic manipulation, namely the reachable internal forces and the rigid-body object motions. A geometric control procedure is outlined...

A geometric procedure for robust decoupling control of contact forces in robotic manipulation

Paolo Mercorelli, Domenico Prattichizzo (2003)

Kybernetika

This paper deals with the problem of controlling contact forces in robotic manipulators with general kinematics. The main focus is on control of grasping contact forces exerted on the manipulated object. A visco-elastic model for contacts is adopted. The robustness of the decoupling controller with respect to the uncertainties affecting system parameters is investigated. Sufficient conditions for the invariance of decoupling action under perturbations on the contact stiffness and damping parameters...

A Hamiltonian approach to fault isolation in a planar vertical take-off and landing aircraft model

Luis H. Rodriguez-Alfaro, Efrain Alcorta-Garcia, David Lara, Gerardo Romero (2015)

International Journal of Applied Mathematics and Computer Science

The problem of fault detection and isolation in a class of nonlinear systems having a Hamiltonian representation is considered. In particular, a model of a planar vertical take-off and landing aircraft with sensor and actuator faults is studied. A Hamiltonian representation is derived from an Euler-Lagrange representation of the system model considered. In this form, nonlinear decoupling is applied in order to obtain subsystems with (as much as possible) specific fault sensitivity properties. The...

A learning paradigm for motion control of mobile manipulators

Foudil Abdessemed, Eric Monacelli, Khier Benmahammed (2006)

International Journal of Applied Mathematics and Computer Science

Motion control of a mobile manipulator is discussed. The objective is to allow the end-effector to track a given trajectory in a fixed world frame. The motion of the platform and that of the manipulator are coordinated by a neural network which is a kind of graph designed from the kinematic model of the system. A learning paradigm is used to produce the required reference variables for each of the mobile platform and the robot manipulator for an overall coordinate behavior. Simulation results are...

A Lyapunov-based design tool of impedance controllers for robot manipulators

Marco Mendoza, Isela Bonilla, Fernando Reyes, Emilio González-Galván (2012)

Kybernetika

This paper presents a design tool of impedance controllers for robot manipulators, based on the formulation of Lyapunov functions. The proposed control approach addresses two challenges: the regulation of the interaction forces, ensured by the impedance error converging to zero, while preserving a suitable path tracking despite constraints imposed by the environment. The asymptotic stability of an equilibrium point of the system, composed by full nonlinear robot dynamics and the impedance control,...

A nonlinear dynamic inversion-based neurocontroller for unmanned combat aerial vehicles during aerial refuelling

Jimoh Olarewaju Pedro, Aarti Panday, Laurent Dala (2013)

International Journal of Applied Mathematics and Computer Science

The paper presents the development of modelling and control strategies for a six-degree-of-freedom, unmanned combat aerial vehicle with the inclusion of the centre of gravity position travel during the straight-leg part of an in-flight refuelling manoeuvre. The centre of gravity position travel is found to have a parabolic variation with an increasing mass of aircraft. A nonlinear dynamic inversion-based neurocontroller is designed for the process under investigation. Three radial basis function...

A robust controller design method and stability analysis of an underactuated underwater vehicle

Cheng Siong Chin, Micheal Wai Shing Lau, Eicher Low, Gerald Gim Lee Seet (2006)

International Journal of Applied Mathematics and Computer Science

The problem of designing a stabilizing feedback controller for an underactuated system is a challenging one since a nonlinear system is not stabilizable by a smooth static state feedback law. A necessary condition for the asymptotical stabilization of an underactuated vehicle to a single equilibrium is that its gravitational field has nonzero elements corresponding to unactuated dynamics. However, global asymptotical stability (GAS) cannot be guaranteed. In this paper, a robust proportional-integral-derivative...

A variable structure observer for the control of robot manipulators

Abdelkader Abdessameud, Mohamed Khelfi (2006)

International Journal of Applied Mathematics and Computer Science

This paper deals with the application of a variable structure observer developed for a class of nonlinear systems to solve the trajectory tracking problem for rigid robot manipulators. The analyzed approach to observer design proposes a simple design methodology for systems having completely observable linear parts and bounded nonlinearities andor uncertainties. This observer is basically the conventional Luenberger observer with an additional switching term that is used to guarantee robustness...

An adaptive output feedback motion tracking controller for robot manipulators: uniform global asymptotic stability and experimentation

Antonio Yarza, Victor Santibanez, Javier Moreno-Valenzuela (2013)

International Journal of Applied Mathematics and Computer Science

This paper deals with two important practical problems in motion control of robot manipulators: the measurement of joint velocities, which often results in noisy signals, and the uncertainty of parameters of the dynamic model. Adaptive output feedback controllers have been proposed in the literature in order to deal with these problems. In this paper, we prove for the first time that Uniform Global Asymptotic Stability (UGAS) can be obtained from an adaptive output feedback tracking controller,...

Currently displaying 1 – 20 of 90

Page 1 Next