Domain decomposition methods coupled with parareal for the transient heat equation in 1 and 2 spatial dimensions
Ladislav Foltyn; Dalibor Lukáš; Ivo Peterek
Applications of Mathematics (2020)
- Volume: 65, Issue: 2, page 173-190
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFoltyn, Ladislav, Lukáš, Dalibor, and Peterek, Ivo. "Domain decomposition methods coupled with parareal for the transient heat equation in 1 and 2 spatial dimensions." Applications of Mathematics 65.2 (2020): 173-190. <http://eudml.org/doc/297241>.
@article{Foltyn2020,
abstract = {We present a parallel solution algorithm for the transient heat equation in one and two spatial dimensions. The problem is discretized in space by the lowest-order conforming finite element method. Further, a one-step time integration scheme is used for the numerical solution of the arising system of ordinary differential equations. For the latter, the parareal method decomposing the time interval into subintervals is employed. It leads to parallel solution of smaller time-dependent problems. At each time slice a pseudo-stationary elliptic heat equation is solved by means of a domain decomposition method (DDM). In the $2d$, case we employ a nonoverlapping Schur complement method, while in the $1d$ case an overlapping Schwarz DDM is employed. We document computational efficiency, as well as theoretical convergence rates of FEM semi-discretization schemes on numerical examples.},
author = {Foltyn, Ladislav, Lukáš, Dalibor, Peterek, Ivo},
journal = {Applications of Mathematics},
keywords = {domain decomposition method; parareal method; finite element method; heat equation},
language = {eng},
number = {2},
pages = {173-190},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Domain decomposition methods coupled with parareal for the transient heat equation in 1 and 2 spatial dimensions},
url = {http://eudml.org/doc/297241},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Foltyn, Ladislav
AU - Lukáš, Dalibor
AU - Peterek, Ivo
TI - Domain decomposition methods coupled with parareal for the transient heat equation in 1 and 2 spatial dimensions
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 173
EP - 190
AB - We present a parallel solution algorithm for the transient heat equation in one and two spatial dimensions. The problem is discretized in space by the lowest-order conforming finite element method. Further, a one-step time integration scheme is used for the numerical solution of the arising system of ordinary differential equations. For the latter, the parareal method decomposing the time interval into subintervals is employed. It leads to parallel solution of smaller time-dependent problems. At each time slice a pseudo-stationary elliptic heat equation is solved by means of a domain decomposition method (DDM). In the $2d$, case we employ a nonoverlapping Schur complement method, while in the $1d$ case an overlapping Schwarz DDM is employed. We document computational efficiency, as well as theoretical convergence rates of FEM semi-discretization schemes on numerical examples.
LA - eng
KW - domain decomposition method; parareal method; finite element method; heat equation
UR - http://eudml.org/doc/297241
ER -
References
top- Bramble, J. H., Pasciak, J. E., Schatz, A. H., 10.2307/2008084, Math. Comput. 47 (1986), 103-134. (1986) Zbl0615.65112MR0842125DOI10.2307/2008084
- Dai, X., Maday, Y., 10.1137/110861002, SIAM J. Sci. Comput. 35 (2013), A52--A78. (2013) Zbl1264.65136MR3033060DOI10.1137/110861002
- Falgout, R. D., Friedhoff, S., Kolev, T. V., MacLachlan, S. P., Schroder, J. B., 10.1137/130944230, SIAM J. Sci. Comput. 36 (2014), C635--C661. (2014) Zbl1310.65115MR3499068DOI10.1137/130944230
- Farhat, C., Chandesris, M., 10.1002/nme.860, Int. J. Numer. Methods Eng. 58 (2003), 1397-1434. (2003) Zbl1032.74701MR2012613DOI10.1002/nme.860
- Farhat, C., Roux, F.-X., 10.1002/nme.1620320604, Int. J. Numer. Methods Eng. 32 (1991), 1205-1227. (1991) Zbl0758.65075MR3618550DOI10.1002/nme.1620320604
- Gander, M. J., 10.1007/978-3-319-23321-5_3, Multiple Shooting and Time Domain Decomposition Methods T. Carraro et al. Contribibutions Mathematical and Computational Sciences 9, Springer, Cham (2015), 69-113. (2015) Zbl1337.65127MR3676210DOI10.1007/978-3-319-23321-5_3
- Gander, M. J., Halpern, L., Nataf, F., 10.1137/S003614290139559X, SIAM J. Numer. Anal. 41 (2003), 1643-1681. (2003) Zbl1085.65077MR2035001DOI10.1137/S003614290139559X
- Gander, M. J., Jiang, Y.-L., Li, R.-J., 10.1007/978-3-642-35275-1_53, Domain Decomposition Methods in Science and Engineering XX R. Bank et al. Lectures Notes in Computational Science and Engineering 91, Springer, Berlin (2013), 451-458. (2013) Zbl1416.65007MR3243021DOI10.1007/978-3-642-35275-1_53
- Gander, M. J., Kwok, F., Mandal, B. C., Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for parabolic problems, ETNA, Electron. Trans. Numer. Anal. 45 (2016), 424-456. (2016) Zbl1355.65128MR3582894
- Gander, M. J., Neumüller, M., 10.1137/15M1046605, SIAM J. Sci. Comput. 38 (2016), A2173--A2208. (2016) Zbl1342.65225MR3521549DOI10.1137/15M1046605
- Gander, M. J., Vandewalle, S., 10.1137/05064607X, SIAM J. Sci. Comput. 29 (2007), 556-578. (2007) Zbl1141.65064MR2306258DOI10.1137/05064607X
- Gander, M. J., Vandewalle, S., 10.1007/978-3-540-34469-8_34, Domain Decomposition Methods in Science and Engineering XVI O. B. Widlund et al. Lectures Notes in Computational Science and Engineering 55, Springer, Berlin (2007), 291-298. (2007) Zbl1104.74004MR2334115DOI10.1007/978-3-540-34469-8_34
- Lions, J.-L., Maday, Y., Turinici, G., 10.1016/S0764-4442(00)01793-6, C. R. Acad. Sci., Paris, Sér. I, Math. 332 (2001), 661-668 French. (2001) Zbl0984.65085MR1842465DOI10.1016/S0764-4442(00)01793-6
- Lukáš, D., Bouchala, J., Vodstrčil, P., Malý, L., 10.1007/s10492-015-0095-5, Appl. Math., Praha 60 (2015), 265-283. (2015) Zbl1363.65215MR3419962DOI10.1007/s10492-015-0095-5
- Maday, Y., 10.4203/csets.24.2, Substructuring Techniques and Domain Decomposition Methods F. Magoulès Computational Science, Engineering and Technology Series 24, Saxe-Coburg Publications, Stirling (2010), 19-44. (2010) DOI10.4203/csets.24.2
- Maday, Y., Turinici, G., 10.1007/3-540-26825-1_45, Domain Decomposition Methods in Science and Engineering T. J. Barth et al. Lectures Notes in Computational Science and Engineering 40, Springer, Berlin (2005), 441-448. (2005) Zbl1067.65102MR2235771DOI10.1007/3-540-26825-1_45
- Mandel, J., Brezina, M., 10.1090/S0025-5718-96-00757-0, Math. Comput. 65 (1996), 1387-1401. (1996) Zbl0853.65129MR1351204DOI10.1090/S0025-5718-96-00757-0
- Mercerat, D., Guillot, L., Vilotte, J.-P., 10.1063/1.3241388, AIP Conf. Proc. 1168 (2009), 1521-1524. (2009) DOI10.1063/1.3241388
- Neumüller, M., Space-Time Methods: Fast Solvers and Applications, Monographic Series, Graz University of Technology, Graz (2013). (2013)
- Schöps, S., Niyonzima, I., Clemens, M., 10.1109/tmag.2017.2763090, IEEE Trans. Magn. 54 (2018), Article No. 7200604, 1-4. (2018) DOI10.1109/tmag.2017.2763090
- Smith, B. F., Bjørstad, P. E., Gropp, W. D., Domain Decomposition. Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, Cambridge (1996). (1996) Zbl0857.65126MR1410757
- Thomée, V., 10.1007/3-540-33122-0, Springer Series in Computational Mathematics 25, Springer, Berlin (2006). (2006) Zbl1105.65102MR2249024DOI10.1007/3-540-33122-0
- Toselli, A., Widlund, O., 10.1007/b137868, Springer Series in Computational Mathematics 34, Springer, Berlin (2005). (2005) Zbl1069.65138MR2104179DOI10.1007/b137868
- Zeidler, E., 10.1007/978-1-4612-0985-0, Springer, New York (1990). (1990) Zbl0684.47028MR1033497DOI10.1007/978-1-4612-0985-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.