Domain decomposition methods coupled with parareal for the transient heat equation in 1 and 2 spatial dimensions

Ladislav Foltyn; Dalibor Lukáš; Ivo Peterek

Applications of Mathematics (2020)

  • Volume: 65, Issue: 2, page 173-190
  • ISSN: 0862-7940

Abstract

top
We present a parallel solution algorithm for the transient heat equation in one and two spatial dimensions. The problem is discretized in space by the lowest-order conforming finite element method. Further, a one-step time integration scheme is used for the numerical solution of the arising system of ordinary differential equations. For the latter, the parareal method decomposing the time interval into subintervals is employed. It leads to parallel solution of smaller time-dependent problems. At each time slice a pseudo-stationary elliptic heat equation is solved by means of a domain decomposition method (DDM). In the 2 d , case we employ a nonoverlapping Schur complement method, while in the 1 d case an overlapping Schwarz DDM is employed. We document computational efficiency, as well as theoretical convergence rates of FEM semi-discretization schemes on numerical examples.

How to cite

top

Foltyn, Ladislav, Lukáš, Dalibor, and Peterek, Ivo. "Domain decomposition methods coupled with parareal for the transient heat equation in 1 and 2 spatial dimensions." Applications of Mathematics 65.2 (2020): 173-190. <http://eudml.org/doc/297241>.

@article{Foltyn2020,
abstract = {We present a parallel solution algorithm for the transient heat equation in one and two spatial dimensions. The problem is discretized in space by the lowest-order conforming finite element method. Further, a one-step time integration scheme is used for the numerical solution of the arising system of ordinary differential equations. For the latter, the parareal method decomposing the time interval into subintervals is employed. It leads to parallel solution of smaller time-dependent problems. At each time slice a pseudo-stationary elliptic heat equation is solved by means of a domain decomposition method (DDM). In the $2d$, case we employ a nonoverlapping Schur complement method, while in the $1d$ case an overlapping Schwarz DDM is employed. We document computational efficiency, as well as theoretical convergence rates of FEM semi-discretization schemes on numerical examples.},
author = {Foltyn, Ladislav, Lukáš, Dalibor, Peterek, Ivo},
journal = {Applications of Mathematics},
keywords = {domain decomposition method; parareal method; finite element method; heat equation},
language = {eng},
number = {2},
pages = {173-190},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Domain decomposition methods coupled with parareal for the transient heat equation in 1 and 2 spatial dimensions},
url = {http://eudml.org/doc/297241},
volume = {65},
year = {2020},
}

TY - JOUR
AU - Foltyn, Ladislav
AU - Lukáš, Dalibor
AU - Peterek, Ivo
TI - Domain decomposition methods coupled with parareal for the transient heat equation in 1 and 2 spatial dimensions
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 173
EP - 190
AB - We present a parallel solution algorithm for the transient heat equation in one and two spatial dimensions. The problem is discretized in space by the lowest-order conforming finite element method. Further, a one-step time integration scheme is used for the numerical solution of the arising system of ordinary differential equations. For the latter, the parareal method decomposing the time interval into subintervals is employed. It leads to parallel solution of smaller time-dependent problems. At each time slice a pseudo-stationary elliptic heat equation is solved by means of a domain decomposition method (DDM). In the $2d$, case we employ a nonoverlapping Schur complement method, while in the $1d$ case an overlapping Schwarz DDM is employed. We document computational efficiency, as well as theoretical convergence rates of FEM semi-discretization schemes on numerical examples.
LA - eng
KW - domain decomposition method; parareal method; finite element method; heat equation
UR - http://eudml.org/doc/297241
ER -

References

top
  1. Bramble, J. H., Pasciak, J. E., Schatz, A. H., 10.2307/2008084, Math. Comput. 47 (1986), 103-134. (1986) Zbl0615.65112MR0842125DOI10.2307/2008084
  2. Dai, X., Maday, Y., 10.1137/110861002, SIAM J. Sci. Comput. 35 (2013), A52--A78. (2013) Zbl1264.65136MR3033060DOI10.1137/110861002
  3. Falgout, R. D., Friedhoff, S., Kolev, T. V., MacLachlan, S. P., Schroder, J. B., 10.1137/130944230, SIAM J. Sci. Comput. 36 (2014), C635--C661. (2014) Zbl1310.65115MR3499068DOI10.1137/130944230
  4. Farhat, C., Chandesris, M., 10.1002/nme.860, Int. J. Numer. Methods Eng. 58 (2003), 1397-1434. (2003) Zbl1032.74701MR2012613DOI10.1002/nme.860
  5. Farhat, C., Roux, F.-X., 10.1002/nme.1620320604, Int. J. Numer. Methods Eng. 32 (1991), 1205-1227. (1991) Zbl0758.65075MR3618550DOI10.1002/nme.1620320604
  6. Gander, M. J., 10.1007/978-3-319-23321-5_3, Multiple Shooting and Time Domain Decomposition Methods T. Carraro et al. Contribibutions Mathematical and Computational Sciences 9, Springer, Cham (2015), 69-113. (2015) Zbl1337.65127MR3676210DOI10.1007/978-3-319-23321-5_3
  7. Gander, M. J., Halpern, L., Nataf, F., 10.1137/S003614290139559X, SIAM J. Numer. Anal. 41 (2003), 1643-1681. (2003) Zbl1085.65077MR2035001DOI10.1137/S003614290139559X
  8. Gander, M. J., Jiang, Y.-L., Li, R.-J., 10.1007/978-3-642-35275-1_53, Domain Decomposition Methods in Science and Engineering XX R. Bank et al. Lectures Notes in Computational Science and Engineering 91, Springer, Berlin (2013), 451-458. (2013) Zbl1416.65007MR3243021DOI10.1007/978-3-642-35275-1_53
  9. Gander, M. J., Kwok, F., Mandal, B. C., Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for parabolic problems, ETNA, Electron. Trans. Numer. Anal. 45 (2016), 424-456. (2016) Zbl1355.65128MR3582894
  10. Gander, M. J., Neumüller, M., 10.1137/15M1046605, SIAM J. Sci. Comput. 38 (2016), A2173--A2208. (2016) Zbl1342.65225MR3521549DOI10.1137/15M1046605
  11. Gander, M. J., Vandewalle, S., 10.1137/05064607X, SIAM J. Sci. Comput. 29 (2007), 556-578. (2007) Zbl1141.65064MR2306258DOI10.1137/05064607X
  12. Gander, M. J., Vandewalle, S., 10.1007/978-3-540-34469-8_34, Domain Decomposition Methods in Science and Engineering XVI O. B. Widlund et al. Lectures Notes in Computational Science and Engineering 55, Springer, Berlin (2007), 291-298. (2007) Zbl1104.74004MR2334115DOI10.1007/978-3-540-34469-8_34
  13. Lions, J.-L., Maday, Y., Turinici, G., 10.1016/S0764-4442(00)01793-6, C. R. Acad. Sci., Paris, Sér. I, Math. 332 (2001), 661-668 French. (2001) Zbl0984.65085MR1842465DOI10.1016/S0764-4442(00)01793-6
  14. Lukáš, D., Bouchala, J., Vodstrčil, P., Malý, L., 10.1007/s10492-015-0095-5, Appl. Math., Praha 60 (2015), 265-283. (2015) Zbl1363.65215MR3419962DOI10.1007/s10492-015-0095-5
  15. Maday, Y., 10.4203/csets.24.2, Substructuring Techniques and Domain Decomposition Methods F. Magoulès Computational Science, Engineering and Technology Series 24, Saxe-Coburg Publications, Stirling (2010), 19-44. (2010) DOI10.4203/csets.24.2
  16. Maday, Y., Turinici, G., 10.1007/3-540-26825-1_45, Domain Decomposition Methods in Science and Engineering T. J. Barth et al. Lectures Notes in Computational Science and Engineering 40, Springer, Berlin (2005), 441-448. (2005) Zbl1067.65102MR2235771DOI10.1007/3-540-26825-1_45
  17. Mandel, J., Brezina, M., 10.1090/S0025-5718-96-00757-0, Math. Comput. 65 (1996), 1387-1401. (1996) Zbl0853.65129MR1351204DOI10.1090/S0025-5718-96-00757-0
  18. Mercerat, D., Guillot, L., Vilotte, J.-P., 10.1063/1.3241388, AIP Conf. Proc. 1168 (2009), 1521-1524. (2009) DOI10.1063/1.3241388
  19. Neumüller, M., Space-Time Methods: Fast Solvers and Applications, Monographic Series, Graz University of Technology, Graz (2013). (2013) 
  20. Schöps, S., Niyonzima, I., Clemens, M., 10.1109/tmag.2017.2763090, IEEE Trans. Magn. 54 (2018), Article No. 7200604, 1-4. (2018) DOI10.1109/tmag.2017.2763090
  21. Smith, B. F., Bjørstad, P. E., Gropp, W. D., Domain Decomposition. Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, Cambridge (1996). (1996) Zbl0857.65126MR1410757
  22. Thomée, V., 10.1007/3-540-33122-0, Springer Series in Computational Mathematics 25, Springer, Berlin (2006). (2006) Zbl1105.65102MR2249024DOI10.1007/3-540-33122-0
  23. Toselli, A., Widlund, O., 10.1007/b137868, Springer Series in Computational Mathematics 34, Springer, Berlin (2005). (2005) Zbl1069.65138MR2104179DOI10.1007/b137868
  24. Zeidler, E., 10.1007/978-1-4612-0985-0, Springer, New York (1990). (1990) Zbl0684.47028MR1033497DOI10.1007/978-1-4612-0985-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.