Weingarten hypersurfaces of the spherical type in Euclidean spaces
Cid D. F. Machado; Carlos M. C. Riveros
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 2, page 213-236
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMachado, Cid D. F., and Riveros, Carlos M. C.. "Weingarten hypersurfaces of the spherical type in Euclidean spaces." Commentationes Mathematicae Universitatis Carolinae 61.2 (2020): 213-236. <http://eudml.org/doc/297242>.
@article{Machado2020,
abstract = {We generalize a parametrization obtained by A. V. Corro in (2006) in the three-dimensional Euclidean space. Using this parametrization we study a class of oriented hypersurfaces $M^n$, $n\ge 2$, in Euclidean space satisfying a relation $\sum _\{r=1\}^\{n\} (-1)^\{r+1\}rf^\{r-1\} \{ n \atopwithdelims ()r\}H_r=0,$ where $H_r$ is the $r$th mean curvature and $f\in C^\{\infty \}(M^n;\mathbb \{R\})$, these hypersurfaces are called Weingarten hypersurfaces of the spherical type. This class of hypersurfaces includes the surfaces of the spherical type (Laguerré minimal surfaces). We characterize these hypersurfaces in terms of harmonic applications. Also, we classify the Weingarten hypersurfaces of the spherical type of rotation and we give explicit examples.},
author = {Machado, Cid D. F., Riveros, Carlos M. C.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Weingarten hypersurface; Laguerre minimal surface; $r$th mean curvature; Laplace–Beltrami operator},
language = {eng},
number = {2},
pages = {213-236},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Weingarten hypersurfaces of the spherical type in Euclidean spaces},
url = {http://eudml.org/doc/297242},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Machado, Cid D. F.
AU - Riveros, Carlos M. C.
TI - Weingarten hypersurfaces of the spherical type in Euclidean spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 2
SP - 213
EP - 236
AB - We generalize a parametrization obtained by A. V. Corro in (2006) in the three-dimensional Euclidean space. Using this parametrization we study a class of oriented hypersurfaces $M^n$, $n\ge 2$, in Euclidean space satisfying a relation $\sum _{r=1}^{n} (-1)^{r+1}rf^{r-1} { n \atopwithdelims ()r}H_r=0,$ where $H_r$ is the $r$th mean curvature and $f\in C^{\infty }(M^n;\mathbb {R})$, these hypersurfaces are called Weingarten hypersurfaces of the spherical type. This class of hypersurfaces includes the surfaces of the spherical type (Laguerré minimal surfaces). We characterize these hypersurfaces in terms of harmonic applications. Also, we classify the Weingarten hypersurfaces of the spherical type of rotation and we give explicit examples.
LA - eng
KW - Weingarten hypersurface; Laguerre minimal surface; $r$th mean curvature; Laplace–Beltrami operator
UR - http://eudml.org/doc/297242
ER -
References
top- Blaschke W., 10.1007/BF02954623, Abh. Math. Sem. Univ. Hamburg 3 (1924), no. 1, 176–194 (German). MR3069426DOI10.1007/BF02954623
- Blaschke W., 10.1007/BF02954624, Abh. Math. Sem. Univ. Hamburg 3 (1924), no. 1, 195–212 (German). MR3069427DOI10.1007/BF02954624
- Blaschke W., 10.1007/BF02950714, Abh. Math. Sem. Univ. Hamburg 4 (1925), no. 1, 1–12 (German). MR3069436DOI10.1007/BF02950714
- Blaschke W., Vorlesungen über Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie III, Springer, Berlin, 1929 (German). MR0015247
- Corro A. V., Generalized Weingarten surfaces of Bryant type in hyperbolic -space, Mat. Comtemp. 30 (2006), 71–89. MR2373504
- Corro A. M. V., Fernandes K. V., Riveros C. M. C., 10.1016/j.difgeo.2018.02.001, Differential Geom. Appl. 58 (2018), 202–226. MR3777754DOI10.1016/j.difgeo.2018.02.001
- Dias D. G., Classes de hipersuperfícies Weingarten generalizada no espaço euclidiano, Ph.D. Thesis, Universidade Federal de Goiás, Goiânia, 2014 (Portuguese).
- Ferreira W., Roitman P., 10.1016/j.difgeo.2008.10.009, Diffferential Geom. Appl. 27 (2009), no. 2, 279–295. MR2503979DOI10.1016/j.difgeo.2008.10.009
- Gálvez J. A., Martínez A., Milán F., 10.1090/S0002-9947-04-03592-5, Trans. Amer. Math. Soc. 356 (2004), no. 9, 3405–3428. MR2055739DOI10.1090/S0002-9947-04-03592-5
- Miyagaki O. H., Equaç oes elípticas modeladas em variedades Riemannianas: Uma introdução, Apresentado em Milênio Workshop em equaç oes elípticas, João Pessoa, 2004 (Portuguese).
- Obata M., 10.4310/jdg/1214428258, J. Differential Geometry 2 (1968), 217–223. MR0234388DOI10.4310/jdg/1214428258
- Pottmann H., Grohs P., Mitra N. J., 10.1007/s10444-008-9076-5, Adv. Comput. Math. 31 (2009), no. 4, 391–419. MR2558260DOI10.1007/s10444-008-9076-5
- Schief W. K., 10.1063/1.1286980, J. Math. Phys. 41 (2000), no. 9, 6566–6599. MR1779663DOI10.1063/1.1286980
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.