Further properties of Stepanov--Orlicz almost periodic functions
Yousra Djabri; Fazia Bedouhene; Fatiha Boulahia
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 3, page 363-382
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDjabri, Yousra, Bedouhene, Fazia, and Boulahia, Fatiha. "Further properties of Stepanov--Orlicz almost periodic functions." Commentationes Mathematicae Universitatis Carolinae 61.3 (2020): 363-382. <http://eudml.org/doc/297253>.
@article{Djabri2020,
abstract = {We revisit the concept of Stepanov--Orlicz almost periodic functions introduced by Hillmann in terms of Bochner transform. Some structural properties of these functions are investigated. A particular attention is paid to the Nemytskii operator between spaces of Stepanov--Orlicz almost periodic functions. Finally, we establish an existence and uniqueness result of Bohr almost periodic mild solution to a class of semilinear evolution equations with Stepanov--Orlicz almost periodic forcing term.},
author = {Djabri, Yousra, Bedouhene, Fazia, Boulahia, Fatiha},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Bohr almost periodic; Bochner transform; Stepanov--Orlicz almost periodic function; semilinear evolution equations; Nemytskii operator},
language = {eng},
number = {3},
pages = {363-382},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Further properties of Stepanov--Orlicz almost periodic functions},
url = {http://eudml.org/doc/297253},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Djabri, Yousra
AU - Bedouhene, Fazia
AU - Boulahia, Fatiha
TI - Further properties of Stepanov--Orlicz almost periodic functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 3
SP - 363
EP - 382
AB - We revisit the concept of Stepanov--Orlicz almost periodic functions introduced by Hillmann in terms of Bochner transform. Some structural properties of these functions are investigated. A particular attention is paid to the Nemytskii operator between spaces of Stepanov--Orlicz almost periodic functions. Finally, we establish an existence and uniqueness result of Bohr almost periodic mild solution to a class of semilinear evolution equations with Stepanov--Orlicz almost periodic forcing term.
LA - eng
KW - Bohr almost periodic; Bochner transform; Stepanov--Orlicz almost periodic function; semilinear evolution equations; Nemytskii operator
UR - http://eudml.org/doc/297253
ER -
References
top- Albrycht J., The theory of Marcinkiewic–Orlicz spaces, Rozprawy Mat. 27 (1962), 56 pages. MR0139935
- Amerio L., Prouse G., Almost-Periodic Functions and Functional Equations, Van Nostrand Reinhold, New York, Ont.-Melbourne, 1971. MR0275061
- Andres J., Bersani A. M., Grande R. F., Hierarchy of almost-periodic function spaces, Rend. Mat. Appl. (7) 26 (2006), no. 2, 121–188. Zbl1133.42002MR2275292
- Andres J., Pennequin D., 10.1080/10236198.2011.587813, J. Difference Equ. Appl. 18 (2012), no. 10, 1665–1682. MR2979829DOI10.1080/10236198.2011.587813
- Andres J., Pennequin D., On the nonexistence of purely Stepanov almost-periodic solutions of ordinary differential equations, Proc. Amer. Math. Soc. 140 (2012), no. 8, 2825–2834. MR2910769
- Bedouhene F., Challali N., Mellah O., Raynaud de Fitte P., Smaali M., Almost periodic solution in distribution for stochastic differential equations with Stepanov almost periodic coefficients, available at arXiv: 1703.00282v3 [math.PR] (2017), 42 pages.
- Bugajewski D., Nawrocki A., 10.5186/aasfm.2017.4250, Ann. Acad. Sci. Fenn., Math. 42 (2017), no. 2, 809–836. MR3701650DOI10.5186/aasfm.2017.4250
- Chen S., Geometry of Orlicz Spaces, Dissertationes Math. (Rozprawy Mat.), 356, 1996. MR1410390
- Cichoń M., Metwali M. M. A., 10.1016/j.jmaa.2011.09.013, J. Math. Anal. Appl. 387 (2012), no. 1, 419–432. MR2845761DOI10.1016/j.jmaa.2011.09.013
- Corduneanu C., Almost Periodic Functions, Interscience Tracts in Pure and Applied Mathematics, 22, Interscience Publishers, John Wiley, New York, 1968. MR0481915
- Dads A. E. H., Es-Sebbar B., Ezzinbi K., Ziat M., 10.1002/mma.4145, Math. Methods Appl. Sci. 40 (2017), no. 7, 2377–2397. MR3636701DOI10.1002/mma.4145
- Danilov L. I., On the uniform approximation of a function that is almost periodic in the sense of Stepanov, Izv. Vyssh. Uchebn. Zaved. Mat (1998), no. 5, 10–18. MR1639154
- Diagana T., 10.1016/j.na.2007.10.051, Nonlinear Anal. 69 (2008), no. 12, 4277–4285. MR2467232DOI10.1016/j.na.2007.10.051
- Diagana T., Zitane M., Stepanov-like pseudo-almost automorphic functions in Lebesgue spaces with variable exponents , Electron. J. Differential Equations 2013 (2013), No. 188, 20 pages. MR3104964
- Ding H.-S., Long W., N'Guérékata G. M., Almost periodic solutions to abstract semilinear evolution equations with Stepanov almost periodic coefficients, J. Comput. Anal. Appl. 13 (2011), no. 2, 231–242. MR2807574
- Hillmann T. R., Besicovitch–Orlicz spaces of almost periodic functions, Real and stochastic analysis, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., Wiley, 1986, 119–167. MR0856581
- Hu Z., Boundedness and Stepanov's almost periodicity of solutions, Electron. J. Differential. Equations 2005 (2005), no. 35, 7 pages. MR2135246
- Hu Z., Mingarelli A. B., 10.1007/s10231-008-0066-5, Ann. Mat. Pura Appl. (4) 187 (2008), no. 4, 719–736. MR2413376DOI10.1007/s10231-008-0066-5
- Hudzik H., Uniform convexity of Musielak–Orlicz spaces with Luxemburg's norm, Comment. Math. Prace Mat. 23 (1983), no. 1, 21–32. MR0709167
- Kasprzak P., Nawrocki A., Signerska-Rynkowska J., 10.1016/j.jde.2017.10.025, J. Differential Equations 264 (2018), no. 4, 2495–2537. MR3737845DOI10.1016/j.jde.2017.10.025
- Kourat H., Caractérisation de quelques propriétés géométriques locales dans les espaces de type Musielak–Orlicz, PhD. Thesis, Mouloud Mammeri University of Tizi–Ouzou, Tizi–Ouzou, 2016 (French).
- Kozlowski W. M., Modular Function Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 122, Marcel Dekker, New York, 1988. Zbl0718.41049MR1474499
- Kufner A., John O., Fučík S., Function Spaces, Monographs and Textsbooks on Mechanics of Solids and Fluids, Mechanics: Analysis, Noordhoff International Publishing, Leyden, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1977. MR0482102
- Levitan B. M., Zhikov V. V., Almost Periodic Functions and Differential Equations, Cambridge University Press, Cambridge, 1982. Zbl0499.43005MR0690064
- Luxemburg W. A. J., Banach Function Spaces, PhD. Dissertation, Delft University of Technology, Delft, 1955. Zbl0162.44701MR0072440
- Musielak J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer, Berlin, 1983. Zbl0557.46020MR0724434
- Pankov A. A., 10.1007/978-94-011-9682-6_5, Mathematics and Its Applications (Soviet Series), 55, Kluwer Academic Publishers Group, Dordrecht, 1990. MR1120781DOI10.1007/978-94-011-9682-6_5
- Radová L., Theorems of Bohr–Neugebauer-type for almost-periodic differential equations, Math. Slovaca 54 (2004), no. 2, 191–207. Zbl1068.34042MR2074215
- Rao A. S., On the Stepanov-almost periodic solution of a second-order operator differential equation, Proc. Edinburgh Math. Soc. (2) 19 (1974/75), 261–263. MR0407409
- Stepanoff W., 10.1007/BF01206623, Math. Ann. 95 (1926), no. 1, 473–498 (German). MR1512290DOI10.1007/BF01206623
- Stoiński S., Almost periodic functions in the Lebesgue measure, Comment. Math. (Prace Mat.) 34 (1994), 189–198. MR1325086
- Zaidman S., 10.4153/CMB-1971-097-5, Canad. Math. Bull. 14 (1971), 551–554. MR0310382DOI10.4153/CMB-1971-097-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.