Theorems of Bohr-Neugebauer-type for almost-periodic differential equations

Lenka Radová

Mathematica Slovaca (2004)

  • Volume: 54, Issue: 2, page 191-207
  • ISSN: 0139-9918

How to cite

top

Radová, Lenka. "Theorems of Bohr-Neugebauer-type for almost-periodic differential equations." Mathematica Slovaca 54.2 (2004): 191-207. <http://eudml.org/doc/32245>.

@article{Radová2004,
author = {Radová, Lenka},
journal = {Mathematica Slovaca},
keywords = {almost-periodic differential equation; bounded and almost-periodic solution; (Bohr, Stepanov, Weyl, Besicovitch) metric; Bohr-Neugebauer-type theorem},
language = {eng},
number = {2},
pages = {191-207},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Theorems of Bohr-Neugebauer-type for almost-periodic differential equations},
url = {http://eudml.org/doc/32245},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Radová, Lenka
TI - Theorems of Bohr-Neugebauer-type for almost-periodic differential equations
JO - Mathematica Slovaca
PY - 2004
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 54
IS - 2
SP - 191
EP - 207
LA - eng
KW - almost-periodic differential equation; bounded and almost-periodic solution; (Bohr, Stepanov, Weyl, Besicovitch) metric; Bohr-Neugebauer-type theorem
UR - http://eudml.org/doc/32245
ER -

References

top
  1. AMERIO L.-PROUSE G., Almost Periodic Functions and Functional Equations, Van Nostrand-Reinhold, New York, 1971. (1971) Zbl0215.15701MR0275061
  2. ANDRES J., Almost periodic and bounded solutions of Carathéodory differential inclusions, Differential Integral Equations 12 (1999), 887-912. (1999) Zbl1017.34011MR1728035
  3. ANDRES J.-BERSANI A. M., Almost-periodicity problem as a fixed-point problem for evolution inclusions, Topol. Methods Nonlinear Anal. 18 (2001), 337-349. Zbl1013.34063MR1911386
  4. ANDRES J.-BERSANI A. M., [unknown], Private communication. Zbl1238.68174
  5. ANDRES J.-BERSANI A. M.-GRANDE R. F., Hierarchy of almost-periodic function spaces, Preprint, 2002. Zbl1133.42002MR2275292
  6. ANDRES J.-BERSANI A. M-LEŚNIAK K., On some almost-periodicity problems in various metrics, Acta Appl. Math. 65 (2001), 35-57. MR1843785
  7. BESICOVITCH A. S., Almost Periodic Functions, Cambridge Univ. Press, Cambridge, 1932. (1932) Zbl0004.25303
  8. BOLES BASIT R.-TSEND L., The generalized Bohr-Neugebauer theorem, Differ. Equ. 8 (1974), 1031-1035. (1974) 
  9. BOHR H.-NEUGEBAUER O., Über lineare Differentialgleichungen mit konstanten Koeffizienten und fastperiodischer rechter Seite, Nachrichten Gottingen 1926 (1926), 8-22. (1926) 
  10. CORDUNEANU C., Almost Periodic Functions, Interscience Publ., New York, 1968. (1968) Zbl0175.09101MR0481915
  11. CORDUNEANU C., Two qualitative inequalities, J. Differential Equations 64 (1986), 16-25. (1986) Zbl0598.34007MR0849661
  12. DALETSKII, YU. L.-KREIN M. G., Stability of Solution of Differential Equations in Banach Spaces, Nauka, Moscow, 1970. (Russian) (1970) MR0352638
  13. DEMIDOVITCH B. P., Lectures on the Mathematical Stability Theory, Nauka, Moscow, 1967. (Russian) (1967) 
  14. FAVARD J., Lecons sur les Fonctions Presque Periodiques, Gauthier-Villars, Paris, 1933. (1933) Zbl0007.34303
  15. FINK A. M., Almost Periodic Differential Equations, Springer-Verlag, New York, 1974. (1974) Zbl0325.34039MR0460799
  16. KRASNOSELSKII M. A.-BURD V. SH.-KOLESOV, YU. S., Nonlinear Almost Periodic Oscillations, John Wiley, New York, 1971. (1971) MR0298131
  17. LEVITAN B. M., Almost Periodic Functions, Gos. Izd. Tekh.-Teor. Lit., Moskow, 1953. (Russian) (1953) Zbl1222.42002MR0060629
  18. LEVITAN B. M.-ZHIKOV V. V., Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, London, 1982. (1982) Zbl0499.43005MR0690064
  19. MASSERA J. L.-SCHAEFFER J. J., Linear Differential Equations and Function Spaces, Academic Press, London, 1982. (1982) 
  20. N'GUEREKATA G. M., Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Acad. Publ., New York, 2001. Zbl1001.43001MR1880351
  21. STOINSKI S., A connection between H-almost periodic functions and almost periodic functions of other types, Funct. Approx. Comment. Math. 3 (1976), 205-223. (1976) Zbl0344.42005MR0447966
  22. YOSHIZAWA T., Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer-Verlag, Berlin, 1975. (1975) Zbl0304.34051MR0466797
  23. ZAIDMAN S., Abstract Differential Equations, Pitman Publ. Ltd., San Francisco-London-Melbourne, 1979. (1979) Zbl0465.34002MR0569750

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.