Functional inequalities and manifolds with nonnegative weighted Ricci curvature

Jing Mao

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 1, page 213-233
  • ISSN: 0011-4642

Abstract

top
We show that n -dimensional ( n 2 ) complete and noncompact metric measure spaces with nonnegative weighted Ricci curvature in which some Caffarelli-Kohn-Nirenberg type inequality holds are isometric to the model metric measure n -space (i.e. the Euclidean metric n -space). We also show that the Euclidean metric spaces are the only complete and noncompact metric measure spaces of nonnegative weighted Ricci curvature satisfying some prescribed Sobolev type inequality.

How to cite

top

Mao, Jing. "Functional inequalities and manifolds with nonnegative weighted Ricci curvature." Czechoslovak Mathematical Journal 70.1 (2020): 213-233. <http://eudml.org/doc/297284>.

@article{Mao2020,
abstract = {We show that $n$-dimensional $(n\geqslant 2)$ complete and noncompact metric measure spaces with nonnegative weighted Ricci curvature in which some Caffarelli-Kohn-Nirenberg type inequality holds are isometric to the model metric measure $n$-space (i.e. the Euclidean metric $n$-space). We also show that the Euclidean metric spaces are the only complete and noncompact metric measure spaces of nonnegative weighted Ricci curvature satisfying some prescribed Sobolev type inequality.},
author = {Mao, Jing},
journal = {Czechoslovak Mathematical Journal},
keywords = {Caffarelli-Kohn-Nirenberg type inequality; weighted Ricci curvature; volume comparison},
language = {eng},
number = {1},
pages = {213-233},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Functional inequalities and manifolds with nonnegative weighted Ricci curvature},
url = {http://eudml.org/doc/297284},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Mao, Jing
TI - Functional inequalities and manifolds with nonnegative weighted Ricci curvature
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 213
EP - 233
AB - We show that $n$-dimensional $(n\geqslant 2)$ complete and noncompact metric measure spaces with nonnegative weighted Ricci curvature in which some Caffarelli-Kohn-Nirenberg type inequality holds are isometric to the model metric measure $n$-space (i.e. the Euclidean metric $n$-space). We also show that the Euclidean metric spaces are the only complete and noncompact metric measure spaces of nonnegative weighted Ricci curvature satisfying some prescribed Sobolev type inequality.
LA - eng
KW - Caffarelli-Kohn-Nirenberg type inequality; weighted Ricci curvature; volume comparison
UR - http://eudml.org/doc/297284
ER -

References

top
  1. Aubin, T., 10.4310/jdg/1214433725, J. Differ. Geom. 11 (1976), 573-598 French. (1976) Zbl0371.46011MR0448404DOI10.4310/jdg/1214433725
  2. Aubin, T., 10.1007/978-1-4612-5734-9, Grundlehren der Mathematischen Wissenschaften 252, Springer, New York (1982). (1982) Zbl0512.53044MR0681859DOI10.1007/978-1-4612-5734-9
  3. Aubin, T., 10.1007/978-3-662-13006-3, Springer Monographs in Mathematics, Springer, Berlin (1998). (1998) Zbl0896.53003MR1636569DOI10.1007/978-3-662-13006-3
  4. Bakry, D., Émery, M., Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci., Paris, Sér. I 299 (1984), 775-778 French. (1984) Zbl0563.60068MR0772092
  5. Bakry, D., Émery, M., 10.1007/BFb0075847, Séminaire de probabilités XIX 1983/84 Lecture Notes in Mathematics 1123, Springer, Berlin (1985), 177-206. (1985) Zbl0561.60080MR0889476DOI10.1007/BFb0075847
  6. Caffarelli, L., Kohn, R., Nirenberg, L., First order interpolation inequalities with weights, Compos. Math. 53 (1984), 259-275. (1984) Zbl0563.46024MR0768824
  7. Catrina, F., Wang, Z.-Q., 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I, Commun. Pure Appl. Math. 54 (2001), 229-258. (2001) Zbl1072.35506MR1794994DOI10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I
  8. Chavel, I., 10.1016/S0079-8169(13)62888-3, Pure and Applied Mathematics 115, Academic Press, Orlando (1984). (1984) Zbl0551.53001MR0768584DOI10.1016/S0079-8169(13)62888-3
  9. Carmo, M. do, Xia, C., 10.1007/s002080050018, Math. Ann. 316 (2000), 319-400. (2000) Zbl0958.53025MR1741276DOI10.1007/s002080050018
  10. Carmo, M. P. do, Xia, C., 10.1112/S0010437X03000745, Compos. Math. 140 (2004), 818-826. (2004) Zbl1066.53073MR2041783DOI10.1112/S0010437X03000745
  11. Freitas, P., Mao, J., Salavessa, I., 10.1007/s00526-013-0692-7, Calc. Var. Partial Differ. Equ. 51 (2014), 701-724. (2014) Zbl1302.35275MR3268868DOI10.1007/s00526-013-0692-7
  12. Gray, A., 10.1007/978-3-0348-7966-8, Addison-Wesley Publishing Company, Redwood City (1990). (1990) Zbl0692.53001MR1044996DOI10.1007/978-3-0348-7966-8
  13. Hardy, G. H., Littlewood, J.-E., Pólya, G., Inequalities, Cambridge University Press, Cambridge (1952). (1952) Zbl0047.05302MR0046395
  14. Hebey, E., 10.1007/BFb0092907, Lecture Notes in Mathematics 1635, Springer, Berlin (1996). (1996) Zbl0866.58068MR1481970DOI10.1007/BFb0092907
  15. Katz, N. N., Kondo, K., 10.1090/S0002-9947-02-02966-5, Trans. Am. Math. Soc. 354 (2002), 2279-2284. (2002) Zbl0990.53032MR1885652DOI10.1090/S0002-9947-02-02966-5
  16. Kondo, K., Tanaka, M., 10.1007/s00208-010-0593-4, Math. Ann. 351 (2011), 251-266. (2011) Zbl1243.53072MR2836657DOI10.1007/s00208-010-0593-4
  17. Ledoux, M., 10.4310/CAG.1999.v7.n2.a7, Commun. Anal. Geom. 7 (1999), 347-353. (1999) Zbl0953.53025MR1685586DOI10.4310/CAG.1999.v7.n2.a7
  18. Lieb, E. H., 10.2307/2007032, Ann. Math. (2) 118 (1983), 349-374. (1983) Zbl0527.42011MR0717827DOI10.2307/2007032
  19. Lott, J., 10.1007/s00014-003-0775-8, Comment. Math. Helv. 78 (2003), 865-883. (2003) Zbl1038.53041MR2016700DOI10.1007/s00014-003-0775-8
  20. Mao, J., 10.2206/kyushujm.66.509, Kyushu J. Math. 66 (2012), 509-516. (2012) Zbl1276.53045MR3051351DOI10.2206/kyushujm.66.509
  21. Mao, J., Eigenvalue Estimation and Some Results on Finite Topological Type, Ph.D. Thesis, IST-UTL (2013). (2013) 
  22. Mao, J., 10.1016/j.matpur.2013.06.006, J. Math. Pures Appl. (9) 101 (2014), 372-393. (2014) Zbl1285.58013MR3168915DOI10.1016/j.matpur.2013.06.006
  23. Mao, J., 10.2206/kyushujm.70.029, Kyushu J. Math. 70 (2016), 29-46. (2016) Zbl1342.53056MR3444586DOI10.2206/kyushujm.70.029
  24. Perelman, G., The entropy formula for the Ricci flow and its geometric applications, Available at https://arxiv.org/abs/math/0211159 (2002). (2002) Zbl1130.53001
  25. Petersen, P., 10.1090/fim/004/04, Riemannian Geometry Fields Institute Monographs 4, American Mathematical Society, Providence (1996), 87-115. (1996) Zbl0843.53031MR1377310DOI10.1090/fim/004/04
  26. Schoen, R., Yau, S.-T., Lectures on Differential Geometry, Conference Proceedings and Lecture Notes in Geometry and Topology 1, International Press, Cambridge (1994). (1994) Zbl0830.53001MR1333601
  27. Shiohama, K., Tanaka, M., 10.1007/s002090200418, Math. Z. 241 (2002), 341-351. (2002) Zbl1020.53019MR1935490DOI10.1007/s002090200418
  28. Talenti, G., 10.1007/BF02418013, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. (1976) Zbl0353.46018MR0463908DOI10.1007/BF02418013
  29. Wei, G., Wylie, W., 10.4310/jdg/1261495336, J. Differ. Geom. 83 (2009), 377-405. (2009) Zbl1189.53036MR2577473DOI10.4310/jdg/1261495336
  30. Xia, C., 10.1215/ijm/1258138064, Ill. J. Math. 45 (2001), 1253-1259. (2001) Zbl0996.53024MR1894894DOI10.1215/ijm/1258138064
  31. Xia, C., 10.1016/j.jfa.2004.11.009, J. Funct. Anal. 224 (2005), 230-241. (2005) Zbl1071.53019MR2139111DOI10.1016/j.jfa.2004.11.009
  32. Xia, C., 10.4310/MRL.2007.v14.n5.a14, Math. Res. Lett. 14 (2007), 875-885. (2007) Zbl1143.53036MR2350131DOI10.4310/MRL.2007.v14.n5.a14

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.