On the local convergence of Kung-Traub's two-point method and its dynamics

Parandoosh Ataei Delshad; Taher Lotfi

Applications of Mathematics (2020)

  • Volume: 65, Issue: 4, page 379-406
  • ISSN: 0862-7940

Abstract

top
In this paper, the local convergence analysis of the family of Kung-Traub's two-point method and the convergence ball for this family are obtained and the dynamical behavior on quadratic and cubic polynomials of the resulting family is studied. We use complex dynamic tools to analyze their stability and show that the region of stable members of this family is vast. Numerical examples are also presented in this study. This method is compared with several widely used solution methods by solving test problems from different chemical engineering application areas, e.g. Planck's radiation law problem, natch distillation at infinite reflux, van der Waal's equation, air gap between two parallel plates and flow in a smooth pipe, in order to check the applicability and effectiveness of our proposed methods.

How to cite

top

Ataei Delshad, Parandoosh, and Lotfi, Taher. "On the local convergence of Kung-Traub's two-point method and its dynamics." Applications of Mathematics 65.4 (2020): 379-406. <http://eudml.org/doc/297302>.

@article{AtaeiDelshad2020,
abstract = {In this paper, the local convergence analysis of the family of Kung-Traub's two-point method and the convergence ball for this family are obtained and the dynamical behavior on quadratic and cubic polynomials of the resulting family is studied. We use complex dynamic tools to analyze their stability and show that the region of stable members of this family is vast. Numerical examples are also presented in this study. This method is compared with several widely used solution methods by solving test problems from different chemical engineering application areas, e.g. Planck's radiation law problem, natch distillation at infinite reflux, van der Waal's equation, air gap between two parallel plates and flow in a smooth pipe, in order to check the applicability and effectiveness of our proposed methods.},
author = {Ataei Delshad, Parandoosh, Lotfi, Taher},
journal = {Applications of Mathematics},
keywords = {local convergence; Kung-Traub's method; complex dynamics; parameter space; basins of attraction; stability},
language = {eng},
number = {4},
pages = {379-406},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the local convergence of Kung-Traub's two-point method and its dynamics},
url = {http://eudml.org/doc/297302},
volume = {65},
year = {2020},
}

TY - JOUR
AU - Ataei Delshad, Parandoosh
AU - Lotfi, Taher
TI - On the local convergence of Kung-Traub's two-point method and its dynamics
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 379
EP - 406
AB - In this paper, the local convergence analysis of the family of Kung-Traub's two-point method and the convergence ball for this family are obtained and the dynamical behavior on quadratic and cubic polynomials of the resulting family is studied. We use complex dynamic tools to analyze their stability and show that the region of stable members of this family is vast. Numerical examples are also presented in this study. This method is compared with several widely used solution methods by solving test problems from different chemical engineering application areas, e.g. Planck's radiation law problem, natch distillation at infinite reflux, van der Waal's equation, air gap between two parallel plates and flow in a smooth pipe, in order to check the applicability and effectiveness of our proposed methods.
LA - eng
KW - local convergence; Kung-Traub's method; complex dynamics; parameter space; basins of attraction; stability
UR - http://eudml.org/doc/297302
ER -

References

top
  1. Ahmad, F., Soleymani, F., Haghani, F. Khaksar, Serra-Capizzano, S., 10.1016/j.amc.2017.07.012, Appl. Math. Comput. 314 (2017), 199-211. (2017) Zbl1426.65071MRMR3683867DOI10.1016/j.amc.2017.07.012
  2. Ahmad, F., Tohidi, E., Ullah, M. Z., Carrasco, J. A., 10.1016/j.camwa.2015.05.012, Comput. Math. Appl. 70 (2015), 624-636. (2015) MR3372047DOI10.1016/j.camwa.2015.05.012
  3. Amat, S., Busquier, S., Plaza, S., Review of some iterative root-finding methods from a dynamical point of view, Sci., Ser. A, Math. Sci. (N.S.) 10 (2004), 3-35. (2004) Zbl1137.37316MR2127479
  4. Amat, S., Busquier, S., Plaza, S., 10.1016/j.cam.2005.03.049, J. Comput. Appl. Math. 189 (2006), 22-33. (2006) Zbl1113.65047MR2202961DOI10.1016/j.cam.2005.03.049
  5. Argyros, I. K., 10.1016/j.jmaa.2004.04.008, J. Math. Anal. Appl. 298 (2004), 374-397. (2004) Zbl1057.65029MR2086964DOI10.1016/j.jmaa.2004.04.008
  6. Argyros, I. K., 10.1016/S1570-579X(13)60006-3, Studies in Computational Mathematics 15. Elservier, Amsterdam (2007). (2007) Zbl1147.65313MR2356038DOI10.1016/S1570-579X(13)60006-3
  7. Argyros, I. K., 10.1007/978-0-387-72743-1, Springer, New York (2008). (2008) Zbl1153.65057MR2428779DOI10.1007/978-0-387-72743-1
  8. Argyros, I. K., Cordero, A., Magreñán, Á. A., Torregrosa, J. R., 10.1016/j.cam.2016.01.060, J. Comput. Appl. Math. 309 (2017), 511-521. (2017) Zbl06626266MR3539801DOI10.1016/j.cam.2016.01.060
  9. Argyros, I. K., Hilout, S., 10.1007/s12190-008-0169-6, J. Comput. Appl. Math. 30 (2009), 237-245. (2009) Zbl1180.65067MR2496614DOI10.1007/s12190-008-0169-6
  10. Argyros, I. K., Hilout, S., 10.1142/8475, World Scientific, Hackensack (2013). (2013) Zbl1279.65062MR3134688DOI10.1142/8475
  11. Argyros, I. K., Kansal, M., Kanwar, V., 10.1007/s40819-016-0196-1, Int. J. Appl. Comput. Math. 3 (2017), 2291-2301. (2017) Zbl1397.65071MR3680702DOI10.1007/s40819-016-0196-1
  12. Argyros, I. K., Kansal, M., Kanwar, V., Bajaj, S., 10.1016/j.amc.2017.07.051, Appl. Math. Comput. 315 (2017), 224-245. (2017) Zbl1426.65064MR3693467DOI10.1016/j.amc.2017.07.051
  13. Argyros, I. K., Magreñán, Á. A., Orcos, L., 10.1007/s10910-016-0605-z, J. Math. Chem. 54 (2016), 1404-1416 9999DOI99999 10.1007/s10910- 016-0605-z. (2016) Zbl1360.65141MR3516898DOI10.1007/s10910-016-0605-z
  14. Argyros, I. K., Ren, H., 10.1007/s11075-009-9271-6, Numer. Algorithms 52 (2009), 257-271. (2009) Zbl1176.65068MR2563704DOI10.1007/s11075-009-9271-6
  15. Beardon, A. F., 10.1007/978-1-4612-4422-6, Graduate Texts in Mathematics 132. Springer, New York (1991). (1991) Zbl0742.30002MR1128089DOI10.1007/978-1-4612-4422-6
  16. Behl, R., Cordero, A., Motsa, S. S., Torregrosa, J. R., 10.1007/s11075-017-0361-6, Numer. Algorithms 77 (2018), 1249-1272. (2018) Zbl1402.65042MR3779086DOI10.1007/s11075-017-0361-6
  17. Chicharro, F. I., Cordero, A., Torregrosa, J. R., 10.1155/2013/780153, Sci. World J. 2013 (2013), Article ID 780153, 11 pages. (2013) DOI10.1155/2013/780153
  18. Chun, C., 10.1016/j.amc.2007.01.006, Appl. Math. Comput. 290 (2007), 57-62. (2007) Zbl1122.65328MR2335430DOI10.1016/j.amc.2007.01.006
  19. Chun, C., Lee, M. Y., Neta, B., Džunić, J., 10.1016/j.amc.2011.12.013, Appl. Math. Comput. 218 (2012), 6427-6438. (2012) Zbl1277.65031MR2879123DOI10.1016/j.amc.2011.12.013
  20. Cordero, A., Feng, L., Magreñán, Á. A., Torregrosa, J. R., 10.1007/s10910-014-0464-4, J. Math. Chem. 53 (2015), 893-910. (2015) Zbl1318.65028MR3311927DOI10.1007/s10910-014-0464-4
  21. Cordero, A., García-Maimó, J., Torregrosa, J. R., Vassileva, M. P., Vindel, P., 10.1016/j.aml.2013.03.012, Appl. Math. Lett. 26 (2013), 842-848. (2013) Zbl1370.37155MR3066701DOI10.1016/j.aml.2013.03.012
  22. Cordero, A., Guasp, L., Torregrosa, J. R., 10.1007/s10910-017-0814-0, J. Math. Chem. 56 (2018), 1902-1923. (2018) Zbl1407.65052MR3825965DOI10.1007/s10910-017-0814-0
  23. Cordero, A., Lotfi, T., Mahdiani, K., Torregrosa, J. R., 10.1007/s10440-014-9869-0, Acta Appl. Math. 134 (2014), 61-74. (2014) Zbl1305.65142MR3273685DOI10.1007/s10440-014-9869-0
  24. Cordero, A., Lotfi, T., Mahdiani, K., Torregrosa, J. R., 10.1016/j.amc.2014.12.141, Appl. Math. Comput. 254 (2015), 240-251. (2015) Zbl1410.65154MR3314451DOI10.1016/j.amc.2014.12.141
  25. Cordero, A., Lotfi, T., Torregrosa, J. R., Assari, P., Mahdiani, K., 10.1007/s40314-014-0192-1, Comput. Appl. Math. 35 (2016), 251-267. (2016) Zbl1342.65126MR3489900DOI10.1007/s40314-014-0192-1
  26. Cordero, A., Soleymani, F., Torregrosa, J. R., Haghani, F. Khaksar, 10.1016/j.amc.2016.09.021, Appl. Math. Comput. 294 (2017), 264-279. (2017) Zbl1411.65071MR3558276DOI10.1016/j.amc.2016.09.021
  27. Fatou, P., 10.24033/bsmf.998, Bull. Soc. Math. Fr. 47 (1919), 161-271 French 9999JFM99999 47.0921.02. (1919) MR1504787DOI10.24033/bsmf.998
  28. Fatou, P., 10.24033/bsmf.1008, Bull. Soc. Math. Fr. 48 (1920), 208-314 French 9999JFM99999 47.0921.02. (1920) MR1504797DOI10.24033/bsmf.1008
  29. Gutiérrez, J. M., Hernández, M. A., Romero, N., 10.1016/j.cam.2009.11.017, J. Comput. Appl. Math. 233 (2010), 2688-2695. (2010) Zbl1201.65071MR2577854DOI10.1016/j.cam.2009.11.017
  30. Jarratt, P., 10.1090/S0025-5718-66-99924-8, Math. Comput. 20 (1966), 434-437. (1966) Zbl0229.65049MR0191085DOI10.1090/S0025-5718-66-99924-8
  31. Jay, L. O., 10.1023/A:1021902825707, BIT 41 (2001), 422-429. (2001) Zbl0973.40001MR1837404DOI10.1023/A:1021902825707
  32. Julia, G., Mémoire sur l'itération des fonctions rationnelles, Journ. de Math. 8 (1918), 47-245 French 9999JFM99999 46.0520.06. (1918) 
  33. King, R. F., 10.1137/0710072, SIAM J. Numer. Anal. 10 (1973), 876-879. (1973) Zbl0266.65040MR0343585DOI10.1137/0710072
  34. Kung, H. T., Traub, J. F., 10.1145/321850.321860, J. Assoc. Comput. Mach. 21 (1974), 643-651. (1974) Zbl0289.65023MR0353657DOI10.1145/321850.321860
  35. Li, D., Liu, P., Kou, J., 10.1016/j.amc.2014.02.083, Appl. Math. Comput. 235 (2014), 221-225. (2014) Zbl1334.65086MR3194598DOI10.1016/j.amc.2014.02.083
  36. Lotfi, T., Magreñán, Á. A., Mahdiani, K., Rainer, J. Javier, 10.1016/j.amc.2014.12.033, Appl. Math. Comput. 252 (2015), 347-353. (2015) Zbl1338.65130MR3305113DOI10.1016/j.amc.2014.12.033
  37. Lotfi, T., Soleymani, F., Ghorbanzadeh, M., Assari, P., 10.1007/s11075-015-9976-7, Numer. Algorithms 70 (2015), 835-845. (2015) Zbl1337.65040MR3428683DOI10.1007/s11075-015-9976-7
  38. Magreñán, Á. A., 10.1016/j.amc.2014.01.037, Appl. Math. Comput. 233 (2014), 29-38. (2014) Zbl1334.65083MR3214960DOI10.1016/j.amc.2014.01.037
  39. Maheshwari, A. K., 10.1016/j.amc.2009.01.047, Appl. Math. Comput. 211 (2009), 383-391. (2009) Zbl1162.65346MR2524167DOI10.1016/j.amc.2009.01.047
  40. Neta, B., Chun, C., Scott, M., 10.1016/j.amc.2013.11.017, Appl. Math. Comput. 227 (2014), 567-592. (2014) Zbl1364.65110MR3146342DOI10.1016/j.amc.2013.11.017
  41. Ostrowski, A. M., 10.1016/s0079-8169(08)x6158-6, Pure and Applied Mathematics 9. Academic Press, New York (1966). (1966) Zbl0222.65070MR0216746DOI10.1016/s0079-8169(08)x6158-6
  42. Petković, M. S., Neta, B., Petković, L. D., Džunić, J., 10.1016/B978-0-12-397013-8.00001-7, Elsevier, Amsterdam (2013). (2013) Zbl1286.65060MR3293985DOI10.1016/B978-0-12-397013-8.00001-7
  43. Qasim, S., Ali, Z., Ahmad, F., Serra-Capizzano, S., Ullah, M. Z., Mahmood, A., 10.1016/j.camwa.2016.02.018, Comput. Math. Appl. 71 (2016), 1464-1478. (2016) MR3477716DOI10.1016/j.camwa.2016.02.018
  44. Rheinboldt, W. C., 10.4064/-3-1-129-142, Mathematical Models and Numerical Methods Banach Center Publications 3. Banach Center, Warsaw (1978), 129-142. (1978) Zbl0378.65029MR0514377DOI10.4064/-3-1-129-142
  45. Roberts, G. E., Horgan-Kobelski, J., 10.1142/S0218127404011399, Int. J. Bifurcation Chaos Appl. Sci. Eng. 14 (2004), 3459-3475. (2004) Zbl1129.37332MRMR2107558DOI10.1142/S0218127404011399
  46. Scott, M., Neta, B., Chun, C., 10.1016/j.amc.2011.07.076, Appl. Math. Comput. 218 (2011), 2584-2599. (2011) Zbl06043881MR2838167DOI10.1016/j.amc.2011.07.076
  47. Shacham, M., 10.1016/0009-2509(89)80026-0, Chem. Eng. Sci. 44 (1989), 1495-1501. (1989) DOI10.1016/0009-2509(89)80026-0
  48. Soleymani, F., Vanani, S. Karimi, 10.1016/j.camwa.2011.10.047, Comput. Math. Appl. 62 (2011), 4619-4626. (2011) Zbl1236.65056MR2855607DOI10.1016/j.camwa.2011.10.047
  49. Soleymani, F., Lotfi, T., Tavakoli, E., Haghani, F. Khaksar, 10.1016/j.amc.2015.01.045, Appl. Math. Comput. 254 (2015), 452-458. (2015) Zbl1410.65177MR3314466DOI10.1016/j.amc.2015.01.045
  50. Traub, J. F., Iterative Methods for the Solution of Equations, Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1964). (1964) Zbl0121.11204MR0169356
  51. Veiseh, H., Lotfi, T., Allahviranloo, T., 10.1007/s40314-017-0458-5, Comput. Appl. Math. 37 (2018), 2428-2444. (2018) Zbl06973223MR3825991DOI10.1007/s40314-017-0458-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.