A note on Skolem-Noether algebras

Juncheol Han; Tsiu-Kwen Lee; Sangwon Park

Czechoslovak Mathematical Journal (2021)

  • Issue: 1, page 137-154
  • ISSN: 0011-4642

Abstract

top
The paper was motivated by Kovacs’ paper (1973), Isaacs’ paper (1980) and a recent paper, due to Brešar et al. (2018), concerning Skolem-Noether algebras. Let K be a unital commutative ring, not necessarily a field. Given a unital K -algebra S , where K is contained in the center of S , n , the goal of this paper is to study the question: when can a homomorphism φ : M n ( K ) M n ( S ) be extended to an inner automorphism of M n ( S ) ? As an application of main results presented in the paper, it is proved that if S is a semilocal algebra with a central separable subalgebra R , then any homomorphism from R into S can be extended to an inner automorphism of S .

How to cite

top

Han, Juncheol, Lee, Tsiu-Kwen, and Park, Sangwon. "A note on Skolem-Noether algebras." Czechoslovak Mathematical Journal (2021): 137-154. <http://eudml.org/doc/297306>.

@article{Han2021,
abstract = {The paper was motivated by Kovacs’ paper (1973), Isaacs’ paper (1980) and a recent paper, due to Brešar et al. (2018), concerning Skolem-Noether algebras. Let $K$ be a unital commutative ring, not necessarily a field. Given a unital $K$-algebra $S$, where $K$ is contained in the center of $S$, $n\in \mathbb \{N\}$, the goal of this paper is to study the question: when can a homomorphism $\phi \colon \{\rm M\}_n(K)\rightarrow \{\rm M\}_n(S)$ be extended to an inner automorphism of $\{\rm M\}_n(S)$? As an application of main results presented in the paper, it is proved that if $S$ is a semilocal algebra with a central separable subalgebra $R$, then any homomorphism from $R$ into $S$ can be extended to an inner automorphism of $S$.},
author = {Han, Juncheol, Lee, Tsiu-Kwen, Park, Sangwon},
journal = {Czechoslovak Mathematical Journal},
keywords = {Skolem-Noether algebra; (inner) automorphism; matrix algebra; central simple algebra; central separable algebra; semilocal ring; unique factorization domain (UFD); stably finite ring; Dedekind-finite ring},
language = {eng},
number = {1},
pages = {137-154},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on Skolem-Noether algebras},
url = {http://eudml.org/doc/297306},
year = {2021},
}

TY - JOUR
AU - Han, Juncheol
AU - Lee, Tsiu-Kwen
AU - Park, Sangwon
TI - A note on Skolem-Noether algebras
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 137
EP - 154
AB - The paper was motivated by Kovacs’ paper (1973), Isaacs’ paper (1980) and a recent paper, due to Brešar et al. (2018), concerning Skolem-Noether algebras. Let $K$ be a unital commutative ring, not necessarily a field. Given a unital $K$-algebra $S$, where $K$ is contained in the center of $S$, $n\in \mathbb {N}$, the goal of this paper is to study the question: when can a homomorphism $\phi \colon {\rm M}_n(K)\rightarrow {\rm M}_n(S)$ be extended to an inner automorphism of ${\rm M}_n(S)$? As an application of main results presented in the paper, it is proved that if $S$ is a semilocal algebra with a central separable subalgebra $R$, then any homomorphism from $R$ into $S$ can be extended to an inner automorphism of $S$.
LA - eng
KW - Skolem-Noether algebra; (inner) automorphism; matrix algebra; central simple algebra; central separable algebra; semilocal ring; unique factorization domain (UFD); stably finite ring; Dedekind-finite ring
UR - http://eudml.org/doc/297306
ER -

References

top
  1. Brešar, M., Hanselka, C., Klep, I., Volčič, J., 10.1016/j.jalgebra.2017.11.045, J. Algebra 498 (2018), 294-314. (2018) Zbl06834833MR3754416DOI10.1016/j.jalgebra.2017.11.045
  2. DeMeyer, F., Ingraham, E., 10.1007/BFb0061226, Lecture Notes in Mathematics 181, Springer, Berlin (1971). (1971) Zbl0215.36602MR0280479DOI10.1007/BFb0061226
  3. Herstein, I. N., 10.5948/upo9781614440154, The Carus Mathematical Monographs 15, Mathematical Association of America, New York (1968). (1968) Zbl0177.05801MR0227205DOI10.5948/upo9781614440154
  4. Isaacs, I. M., 10.1016/0024-3795(80)90221-9, Linear Algebra Appl. 31 (1980), 215-231. (1980) Zbl0434.16015MR0570392DOI10.1016/0024-3795(80)90221-9
  5. Kaplansky, I., Fields and Rings, Chicago Lectures in Mathematics, The University of Chicago Press, Chicago (1969). (1969) Zbl0238.16001MR0269449
  6. Kovacs, A., 10.2140/pjm.1973.49.161, Pac. J. Math. 49 (1973), 161-170. (1973) Zbl0275.16019MR0447332DOI10.2140/pjm.1973.49.161
  7. Lam, T. Y., 10.1007/978-1-4684-0406-7, Graduate Texts in Mathematics 131, Springer, New York (1991). (1991) Zbl0728.16001MR1125071DOI10.1007/978-1-4684-0406-7
  8. McCoy, N. H., 10.1215/S0012-7094-45-01232-4, Duke Math. J. 12 (1945), 381-387. (1945) Zbl0060.05901MR0012266DOI10.1215/S0012-7094-45-01232-4
  9. Milinski, A., 10.1080/00927879308824760, Commun. Algebra 21 (1993), 3719-3725. (1993) Zbl0793.16030MR1231628DOI10.1080/00927879308824760
  10. Rosenberg, A., Zelinsky, D., 10.2140/pjm.1961.11.1109, Pac. J. Math. 11 (1961), 1109-1117. (1961) Zbl0116.02501MR0148709DOI10.2140/pjm.1961.11.1109
  11. Rowen, L., 10.1090/S0002-9904-1973-13162-3, Bull. Am. Math. Soc. 79 (1973), 219-223. (1973) Zbl0252.16007MR0309996DOI10.1090/S0002-9904-1973-13162-3
  12. Srivastava, J. B., Shah, S. K., 10.1016/1385-7258(80)90035-9, Indag. Math. 42 (1980), 347-352. (1980) Zbl0442.16010MR0587061DOI10.1016/1385-7258(80)90035-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.