A note on Skolem-Noether algebras
Juncheol Han; Tsiu-Kwen Lee; Sangwon Park
Czechoslovak Mathematical Journal (2021)
- Issue: 1, page 137-154
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHan, Juncheol, Lee, Tsiu-Kwen, and Park, Sangwon. "A note on Skolem-Noether algebras." Czechoslovak Mathematical Journal (2021): 137-154. <http://eudml.org/doc/297306>.
@article{Han2021,
abstract = {The paper was motivated by Kovacs’ paper (1973), Isaacs’ paper (1980) and a recent paper, due to Brešar et al. (2018), concerning Skolem-Noether algebras. Let $K$ be a unital commutative ring, not necessarily a field. Given a unital $K$-algebra $S$, where $K$ is contained in the center of $S$, $n\in \mathbb \{N\}$, the goal of this paper is to study the question: when can a homomorphism $\phi \colon \{\rm M\}_n(K)\rightarrow \{\rm M\}_n(S)$ be extended to an inner automorphism of $\{\rm M\}_n(S)$? As an application of main results presented in the paper, it is proved that if $S$ is a semilocal algebra with a central separable subalgebra $R$, then any homomorphism from $R$ into $S$ can be extended to an inner automorphism of $S$.},
author = {Han, Juncheol, Lee, Tsiu-Kwen, Park, Sangwon},
journal = {Czechoslovak Mathematical Journal},
keywords = {Skolem-Noether algebra; (inner) automorphism; matrix algebra; central simple algebra; central separable algebra; semilocal ring; unique factorization domain (UFD); stably finite ring; Dedekind-finite ring},
language = {eng},
number = {1},
pages = {137-154},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on Skolem-Noether algebras},
url = {http://eudml.org/doc/297306},
year = {2021},
}
TY - JOUR
AU - Han, Juncheol
AU - Lee, Tsiu-Kwen
AU - Park, Sangwon
TI - A note on Skolem-Noether algebras
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 137
EP - 154
AB - The paper was motivated by Kovacs’ paper (1973), Isaacs’ paper (1980) and a recent paper, due to Brešar et al. (2018), concerning Skolem-Noether algebras. Let $K$ be a unital commutative ring, not necessarily a field. Given a unital $K$-algebra $S$, where $K$ is contained in the center of $S$, $n\in \mathbb {N}$, the goal of this paper is to study the question: when can a homomorphism $\phi \colon {\rm M}_n(K)\rightarrow {\rm M}_n(S)$ be extended to an inner automorphism of ${\rm M}_n(S)$? As an application of main results presented in the paper, it is proved that if $S$ is a semilocal algebra with a central separable subalgebra $R$, then any homomorphism from $R$ into $S$ can be extended to an inner automorphism of $S$.
LA - eng
KW - Skolem-Noether algebra; (inner) automorphism; matrix algebra; central simple algebra; central separable algebra; semilocal ring; unique factorization domain (UFD); stably finite ring; Dedekind-finite ring
UR - http://eudml.org/doc/297306
ER -
References
top- Brešar, M., Hanselka, C., Klep, I., Volčič, J., 10.1016/j.jalgebra.2017.11.045, J. Algebra 498 (2018), 294-314. (2018) Zbl06834833MR3754416DOI10.1016/j.jalgebra.2017.11.045
- DeMeyer, F., Ingraham, E., 10.1007/BFb0061226, Lecture Notes in Mathematics 181, Springer, Berlin (1971). (1971) Zbl0215.36602MR0280479DOI10.1007/BFb0061226
- Herstein, I. N., 10.5948/upo9781614440154, The Carus Mathematical Monographs 15, Mathematical Association of America, New York (1968). (1968) Zbl0177.05801MR0227205DOI10.5948/upo9781614440154
- Isaacs, I. M., 10.1016/0024-3795(80)90221-9, Linear Algebra Appl. 31 (1980), 215-231. (1980) Zbl0434.16015MR0570392DOI10.1016/0024-3795(80)90221-9
- Kaplansky, I., Fields and Rings, Chicago Lectures in Mathematics, The University of Chicago Press, Chicago (1969). (1969) Zbl0238.16001MR0269449
- Kovacs, A., 10.2140/pjm.1973.49.161, Pac. J. Math. 49 (1973), 161-170. (1973) Zbl0275.16019MR0447332DOI10.2140/pjm.1973.49.161
- Lam, T. Y., 10.1007/978-1-4684-0406-7, Graduate Texts in Mathematics 131, Springer, New York (1991). (1991) Zbl0728.16001MR1125071DOI10.1007/978-1-4684-0406-7
- McCoy, N. H., 10.1215/S0012-7094-45-01232-4, Duke Math. J. 12 (1945), 381-387. (1945) Zbl0060.05901MR0012266DOI10.1215/S0012-7094-45-01232-4
- Milinski, A., 10.1080/00927879308824760, Commun. Algebra 21 (1993), 3719-3725. (1993) Zbl0793.16030MR1231628DOI10.1080/00927879308824760
- Rosenberg, A., Zelinsky, D., 10.2140/pjm.1961.11.1109, Pac. J. Math. 11 (1961), 1109-1117. (1961) Zbl0116.02501MR0148709DOI10.2140/pjm.1961.11.1109
- Rowen, L., 10.1090/S0002-9904-1973-13162-3, Bull. Am. Math. Soc. 79 (1973), 219-223. (1973) Zbl0252.16007MR0309996DOI10.1090/S0002-9904-1973-13162-3
- Srivastava, J. B., Shah, S. K., 10.1016/1385-7258(80)90035-9, Indag. Math. 42 (1980), 347-352. (1980) Zbl0442.16010MR0587061DOI10.1016/1385-7258(80)90035-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.