Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

A unified approach to the Armendariz property of polynomial rings and power series rings

Tsiu-Kwen LeeYiqiang Zhou — 2008

Colloquium Mathematicae

A ring R is called Armendariz (resp., Armendariz of power series type) if, whenever ( i 0 a i x i ) ( j 0 b j x j ) = 0 in R[x] (resp., in R[[x]]), then a i b j = 0 for all i and j. This paper deals with a unified generalization of the two concepts (see Definition 2). Some known results on Armendariz rings are extended to this more general situation and new results are obtained as consequences. For instance, it is proved that a ring R is Armendariz of power series type iff the same is true of R[[x]]. For an injective endomorphism σ of a ring...

On lifting of idempotents and semiregular endomorphism rings

Tsiu-Kwen LeeYiqiang Zhou — 2011

Colloquium Mathematicae

Starting with some observations on (strong) lifting of idempotents, we characterize a module whose endomorphism ring is semiregular with respect to the ideal of endomorphisms with small image. This is the dual of Yamagata's work [Colloq. Math. 113 (2008)] on a module whose endomorphism ring is semiregular with respect to the ideal of endomorphisms with large kernel.

Partially defined σ-derivations on semisimple Banach algebras

Tsiu-Kwen LeeCheng-Kai Liu — 2009

Studia Mathematica

Let A be a semisimple Banach algebra with a linear automorphism σ and let δ: I → A be a σ-derivation, where I is an ideal of A. Then Φ(δ)(I ∩ σ(I)) = 0, where Φ(δ) is the separating space of δ. As a consequence, if I is an essential ideal then the σ-derivation δ is closable. In a prime C*-algebra, we show that every σ-derivation defined on a nonzero ideal is continuous. Finally, any linear map on a prime semisimple Banach algebra with nontrivial idempotents is continuous if it satisfies the σ-derivation...

An intermediate ring between a polynomial ring and a power series ring

M. Tamer KoşanTsiu-Kwen LeeYiqiang Zhou — 2013

Colloquium Mathematicae

Let R[x] and R[[x]] respectively denote the ring of polynomials and the ring of power series in one indeterminate x over a ring R. For an ideal I of R, denote by [R;I][x] the following subring of R[[x]]: [R;I][x]: = i 0 r i x i R [ [ x ] ] : ∃ 0 ≤ n∈ ℤ such that r i I , ∀ i ≥ n. The polynomial and power series rings over R are extreme cases where I = 0 or R, but there are ideals I such that neither R[x] nor R[[x]] is isomorphic to [R;I][x]. The results characterizing polynomial rings or power series rings with a certain ring...

Page 1

Download Results (CSV)