The range of non-linear natural polynomials cannot be context-free
Kybernetika (2020)
- Volume: 56, Issue: 4, page 722-726
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPálvölgyi, Dömötör. "The range of non-linear natural polynomials cannot be context-free." Kybernetika 56.4 (2020): 722-726. <http://eudml.org/doc/297310>.
@article{Pálvölgyi2020,
abstract = {Suppose that some polynomial $f$ with rational coefficients takes only natural values at natural numbers, i. e., $L=\lbrace f(n)\mid n\in \{\mathbb \{N\}\}\rbrace \subseteq \{\mathbb \{N\}\}$. We show that the base-$q$ representation of $L$ is a context-free language if and only if $f$ is linear, answering a question of Shallit. The proof is based on a new criterion for context-freeness, which is a combination of the Interchange lemma and a generalization of the Pumping lemma.},
author = {Pálvölgyi, Dömötör},
journal = {Kybernetika},
keywords = {contex-free languages; pumping lemma},
language = {eng},
number = {4},
pages = {722-726},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The range of non-linear natural polynomials cannot be context-free},
url = {http://eudml.org/doc/297310},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Pálvölgyi, Dömötör
TI - The range of non-linear natural polynomials cannot be context-free
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 4
SP - 722
EP - 726
AB - Suppose that some polynomial $f$ with rational coefficients takes only natural values at natural numbers, i. e., $L=\lbrace f(n)\mid n\in {\mathbb {N}}\rbrace \subseteq {\mathbb {N}}$. We show that the base-$q$ representation of $L$ is a context-free language if and only if $f$ is linear, answering a question of Shallit. The proof is based on a new criterion for context-freeness, which is a combination of the Interchange lemma and a generalization of the Pumping lemma.
LA - eng
KW - contex-free languages; pumping lemma
UR - http://eudml.org/doc/297310
ER -
References
top- Bar-Hillel, Y., Perles, M. A., Shamir, E., 10.1524/stuf.1961.14.14.143, Zeitschrift für Phonetik, Sprachwissenschaft, und Kommunikationsforschung 14 (1961), 2, 143-172. MR0151376DOI10.1524/stuf.1961.14.14.143
- Dömösi, P., Kudlek, M., 10.1007/3-540-48321-7_18, In: Fund. Comput. Theory 1999, pp. 226-233. MR1850234DOI10.1007/3-540-48321-7_18
- Ogden, W., Ross, R. J., Winklmann, K., 10.1137/0214031, SIAM J. Comput. 14 (1982), 2, 410-415. MR0784746DOI10.1137/0214031
- Shallit, J., 10.1017/cbo9780511808876, Cambridge University Press, New York 2008. DOI10.1017/cbo9780511808876
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.