Non-fragile estimation for discrete-time T-S fuzzy systems with event-triggered protocol
Fei Han; Wei Gao; Hongyu Gao; Qianqian He
Kybernetika (2020)
- Volume: 56, Issue: 1, page 57-80
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHan, Fei, et al. "Non-fragile estimation for discrete-time T-S fuzzy systems with event-triggered protocol." Kybernetika 56.1 (2020): 57-80. <http://eudml.org/doc/297328>.
@article{Han2020,
abstract = {This paper investigates the non-fragile state estimation problem for a class of discrete-time T-S fuzzy systems with time-delays and multiple missing measurements under event-triggered mechanism. First of all, the plant is subject to the time-varying delays and the stochastic disturbances. Next, a random white sequence, the element of which obeys a general probabilistic distribution defined on $[0,1]$, is utilized to formulate the occurrence of the missing measurements. Also, an event generator function is employed to regulate the transmission of data to save the precious energy. Then, a non-fragile state estimator is constructed to reflect the randomly occurring gain variations in the implementing process. By means of the Lyapunov-Krasovskii functional, the desired sufficient conditions are obtained such that the Takagi-Sugeno (T-S) fuzzy estimation error system is exponentially ultimately bounded in the mean square. And then the upper bound is minimized via the robust optimization technique and the estimator gain matrices can be calculated. Finally, a simulation example is utilized to demonstrate the effectiveness of the state estimation scheme proposed in this paper.},
author = {Han, Fei, Gao, Wei, Gao, Hongyu, He, Qianqian},
journal = {Kybernetika},
keywords = {Takagi--Sugeno fuzzy system; exponentially ultimately boundness; non-fragile estimation; robust optimization},
language = {eng},
number = {1},
pages = {57-80},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Non-fragile estimation for discrete-time T-S fuzzy systems with event-triggered protocol},
url = {http://eudml.org/doc/297328},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Han, Fei
AU - Gao, Wei
AU - Gao, Hongyu
AU - He, Qianqian
TI - Non-fragile estimation for discrete-time T-S fuzzy systems with event-triggered protocol
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 1
SP - 57
EP - 80
AB - This paper investigates the non-fragile state estimation problem for a class of discrete-time T-S fuzzy systems with time-delays and multiple missing measurements under event-triggered mechanism. First of all, the plant is subject to the time-varying delays and the stochastic disturbances. Next, a random white sequence, the element of which obeys a general probabilistic distribution defined on $[0,1]$, is utilized to formulate the occurrence of the missing measurements. Also, an event generator function is employed to regulate the transmission of data to save the precious energy. Then, a non-fragile state estimator is constructed to reflect the randomly occurring gain variations in the implementing process. By means of the Lyapunov-Krasovskii functional, the desired sufficient conditions are obtained such that the Takagi-Sugeno (T-S) fuzzy estimation error system is exponentially ultimately bounded in the mean square. And then the upper bound is minimized via the robust optimization technique and the estimator gain matrices can be calculated. Finally, a simulation example is utilized to demonstrate the effectiveness of the state estimation scheme proposed in this paper.
LA - eng
KW - Takagi--Sugeno fuzzy system; exponentially ultimately boundness; non-fragile estimation; robust optimization
UR - http://eudml.org/doc/297328
ER -
References
top- Bu, X., Dong, H., Han, F., Hou, N., Li, G., 10.1016/j.neucom.2018.07.087, Neurocomputing 346 (2019), 58-64. MR4044317DOI10.1016/j.neucom.2018.07.087
- Chen, W., Ding, D., Ge, X., Han, Q.-L., Wei, G., 10.1109/tcyb.2018.2885567, IEEE Trans. Cybernet. 59 (2020), 4, 1372-1382. DOI10.1109/tcyb.2018.2885567
- Chen, W., Zhong, J., Zheng, W., 10.1016/j.automatica.2016.04.031, Automatica 71 (2016), 89-97. MR3521957DOI10.1016/j.automatica.2016.04.031
- Ding, D., Han, Q.-L., Wang, Z., Ge, X., 10.1109/tii.2019.2905295, IEEE Trans. Industr. Inform. 15 (2019), 2483-2499. DOI10.1109/tii.2019.2905295
- Ding, D., Wang, Z., Han, Q.-L., Wei, G., 10.1109/tii.2019.2905295, IEEE Trans. Cybernet. 49 (2019), 2372-2384. DOI10.1109/tii.2019.2905295
- Dong, H., Bu, X., Hou, N., Liu, Y., Alsaadi, F. E., Hayat, T., 10.1016/j.inffus.2016.12.005, Inform. Fusion 36 (2017), 243-250. DOI10.1016/j.inffus.2016.12.005
- Ding, D., Wang, Z., Wei, G., Alsaadi, F. E., 10.1049/iet-cta.2016.0135, IET Control Theory Appl. 10 (2016), 1808-1815. MR3587315DOI10.1049/iet-cta.2016.0135
- Ge, X., Han, Q.-L., Wang, Z., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernet. 49 (2019),1148-1159. DOI10.1109/tcyb.2017.2789296
- Ge, X., Han, Q.-L., Wang, Z., 10.1109/tcyb.2017.2769722, IEEE Trans. Cybernet. 49 (2019), 171-183. DOI10.1109/tcyb.2017.2769722
- Ge, X., Han, Q.-L., 10.1109/tcyb.2016.2570860, IEEE Trans. Cybernet. 47 (2017), 1807-1819. DOI10.1109/tcyb.2016.2570860
- Gao, M., Yang, S., Sheng, L., Zhou, D., 10.1016/j.neucom.2018.08.087, Neurocomputing 346 (2019), 65-72. DOI10.1016/j.neucom.2018.08.087
- Guan, X., Chen, C., 10.1109/TFUZZ.2004.825085, IEEE Trans. Fuzzy System 12 (2004), 236-249. MR2096656DOI10.1109/TFUZZ.2004.825085
- Han, F., Song, Y., Zhang, S., Li, W., 10.1016/j.neucom.2016.09.022, Neruocomputing 219 (2017), 221-231. DOI10.1016/j.neucom.2016.09.022
- Han, F., Ding, D., Yang., F., Gao, W., 10.1002/rnc.4783, Int. J. Robust Nonlinear Control 30 (2020) 843-863. DOI10.1002/rnc.4783
- Hu, J., Chen, D., Du, J., 10.1080/03081079.2014.892251, Int. J. General Systems 43 (2014), 387-401. MR3177030DOI10.1080/03081079.2014.892251
- Hu, J., Liang, J., Chen, D., 10.1016/j.jfranklin.2015.02.002, J. Franklin Inst. 352 (2015), 1946-1962. MR3334122DOI10.1016/j.jfranklin.2015.02.002
- Liu, Y., Guo, B., Park, J., 10.1016/j.fss.2016.11.001, Fuzzy Sets Systems 316 (2017), 99-116. MR3623196DOI10.1016/j.fss.2016.11.001
- Ko, J. W., Park, P. G., 10.1049/iet-cta.2011.0009, IET Control Theory 6 (2012), 313-318. MR2932086DOI10.1049/iet-cta.2011.0009
- Liu, Y., Wang, Z., Liang, J., Liu, X., 10.1109/tsmcb.2008.925745, IEEE Trans. Cybernet. 38 (2008), 1314-1325. DOI10.1109/tsmcb.2008.925745
- Li, Q., Shen, B., Wang, Z., 10.1016/j.jfranklin.2018.02.007, J. Franklin Inst. 355 (2018), 3104-3121. MR3778262DOI10.1016/j.jfranklin.2018.02.007
- Li, Q., Shen, B., Liu, Y., Alsaadi, F. E., 10.1016/j.neucom.2015.10.017, Neurocomputing 174 (2016), 912-920. DOI10.1016/j.neucom.2015.10.017
- Li, J., Dong, H., Wang, Z., Bu, X., Partial-Neurons-Based Passivity-Guaranteed state estimation for neural networks with randomly occurring time-delays., IEEE Trans. Neural Networks Learning Syst. (2019), 1-7.
- Li, J., Dong, H., Wang, Z., Hou, N., Alsaadi, F. E., 10.1007/s00521-017-2980-1, Neural Computing Appl. 31 (2019), 65-78. DOI10.1007/s00521-017-2980-1
- Lian, Z., He, Y., Zhang, C., 10.1007/s12555-015-2001-z, Int. Control Automat. Syst. 14 (2016), 21-28. MR3774604DOI10.1007/s12555-015-2001-z
- Liu, Y., Wang, Z., He, X., Zhou, D., 10.1016/j.automatica.2015.02.022, Automatica 54 (2015), 348-359. MR3324541DOI10.1016/j.automatica.2015.02.022
- Liu, Y., Wang, Z., Zhou, D., 10.1080/00207179.2017.1337933, Int. J. Control 91 (2018), 2250-2260. MR3857116DOI10.1080/00207179.2017.1337933
- Liu, J., Liu, Q., Cao, J., 10.1016/j.neucom.2015.12.049, Neurocomputing 189 (2016), 86-94. DOI10.1016/j.neucom.2015.12.049
- Ma, L., Wang, Z., Liu, Y., Alsaadi, F. E., 10.1002/rnc.3809, Int. J. Robust Nonlinear Control 27 (2017), 4443-4456. MR3733677DOI10.1002/rnc.3809
- Shi, P., Zhang, Y., Agarwal, R. K., 10.1016/j.neucom.2014.09.059, Neurocomputing 151 (2015), 168-174. DOI10.1016/j.neucom.2014.09.059
- Sheng, L., Niu, Y., Gao, M., 10.1016/j.isatra.2018.11.012, ISA Trans. 87 (2019), 55-67. DOI10.1016/j.isatra.2018.11.012
- Sheng, L., Wang, Z., Zou, L., Alsaadi, F., 10.1109/tnnls.2016.2580601, IEEE Trans. Neural Networks Learning Syst. 28 (2017), 2382-2394. MR3709755DOI10.1109/tnnls.2016.2580601
- Shen, Y., Wang, Z., Shen, B., Alsaadi, Fa. E., Alsaadi, F. E., 10.1016/j.inffus.2019.08.013, Inform. Fusion 55 (2020), 281-291. DOI10.1016/j.inffus.2019.08.013
- Tong, M., Lin, W., Huo, X., Jin, Z., 10.1177/1729881419894417, Int. J. Advanced Robotic Syst. 17 (2020), 1, 1729881419894417. DOI10.1177/1729881419894417
- Tian, E., Wang, Z., Zou, L., Yue, D., 10.1002/rnc.4447, Int. J. Robust and Nonlinear Control 29 (2019), 1484-1498. MR3915146DOI10.1002/rnc.4447
- Takagi, T., Sugeno, M., Fuzzy identification of systems and its application to modelling and control., IEEE Trans. Systems Man Cybernet. SMC-15 (1985), 116-132
- Yu, Y., Dong, H., Wang, Z., 10.1016/j.neucom.2015.11.079, Neurocomputing 182 (2016), 18-24. DOI10.1016/j.neucom.2015.11.079
- Yan, H., Qian, F., Yang, F., 10.1016/j.ins.2015.09.027, Inform. Sci. 370 (2016), 772-782. DOI10.1016/j.ins.2015.09.027
- Wang, L., Wang, Z., Huang, T., Wei, G., 10.1109/tcyb.2015.2478860, IEEE Trans. Cybernet. 46 (2016), 2497-2508. DOI10.1109/tcyb.2015.2478860
- Wang, F., Wang, Z., Liang, J., 10.1109/tcyb.2018.2821188, IEEE Trans. Cybernet. 49 (2019), 2479-2489. DOI10.1109/tcyb.2018.2821188
- Wang, B., Cheng, J., Al-Barakati, A., 10.1016/j.sigpro.2017.05.018, Signal Process. 140 (2017), 161-170. DOI10.1016/j.sigpro.2017.05.018
- Wu, L., Su, X., Shi, P., 10.1007/978-3-319-11316-6_4, In: Fuzzy Control Systems with Time-Delay and Stochastic Perturbation, Springer-Cham 2015, 79-113. MR3525793DOI10.1007/978-3-319-11316-6_4
- Zhang, L., Ning, Z., Wang, Z., 10.1109/tsmc.2015.2435700, IEEE Trans. Systems Man Cybernet.: Systems 46 (2016), 559-572. DOI10.1109/tsmc.2015.2435700
- Zhang, D., Shi, P., Wang, Q., 10.1016/j.fss.2016.02.009, Fuzzy Sets Syst. 306 (2017), 137-152. MR3567161DOI10.1016/j.fss.2016.02.009
- Zou, L., Wang, Z., Gao, H., Liu, X., 10.1109/tcyb.2014.2386781, IEEE Trans. Cybernet. 45 (2015), 2804-2815. DOI10.1109/tcyb.2014.2386781
- Zhang, S., Wang, Z., Ding, D., Wei, G., Alsaadi, F. E., Hayat, T., 10.1109/tfuzz.2016.2641023, IEEE Trans. Fuzzy Syst. 26 (2018), 142-154. DOI10.1109/tfuzz.2016.2641023
- Zhe, D., Zheng, Y., 10.1109/lsp.2006.873148, IEEE Signal Process. Lett. 13 (2006), 493-496. DOI10.1109/lsp.2006.873148
- Zhang, X., Han, Q., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C., 10.1109/JAS.2019.1911651, IEEE/CAA J. Automat. Sinica (2019), 1-17. MR3748030DOI10.1109/JAS.2019.1911651
- Zuo, Z., Han, Q., Ning, B., Ge, X., Zhang, X., 10.1109/tii.2018.2817248, IEEE Trans. Industr. Inform. 14 (2018), 2322-2334. MR3932129DOI10.1109/tii.2018.2817248
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.