Non-fragile estimation for discrete-time T-S fuzzy systems with event-triggered protocol

Fei Han; Wei Gao; Hongyu Gao; Qianqian He

Kybernetika (2020)

  • Volume: 56, Issue: 1, page 57-80
  • ISSN: 0023-5954

Abstract

top
This paper investigates the non-fragile state estimation problem for a class of discrete-time T-S fuzzy systems with time-delays and multiple missing measurements under event-triggered mechanism. First of all, the plant is subject to the time-varying delays and the stochastic disturbances. Next, a random white sequence, the element of which obeys a general probabilistic distribution defined on [ 0 , 1 ] , is utilized to formulate the occurrence of the missing measurements. Also, an event generator function is employed to regulate the transmission of data to save the precious energy. Then, a non-fragile state estimator is constructed to reflect the randomly occurring gain variations in the implementing process. By means of the Lyapunov-Krasovskii functional, the desired sufficient conditions are obtained such that the Takagi-Sugeno (T-S) fuzzy estimation error system is exponentially ultimately bounded in the mean square. And then the upper bound is minimized via the robust optimization technique and the estimator gain matrices can be calculated. Finally, a simulation example is utilized to demonstrate the effectiveness of the state estimation scheme proposed in this paper.

How to cite

top

Han, Fei, et al. "Non-fragile estimation for discrete-time T-S fuzzy systems with event-triggered protocol." Kybernetika 56.1 (2020): 57-80. <http://eudml.org/doc/297328>.

@article{Han2020,
abstract = {This paper investigates the non-fragile state estimation problem for a class of discrete-time T-S fuzzy systems with time-delays and multiple missing measurements under event-triggered mechanism. First of all, the plant is subject to the time-varying delays and the stochastic disturbances. Next, a random white sequence, the element of which obeys a general probabilistic distribution defined on $[0,1]$, is utilized to formulate the occurrence of the missing measurements. Also, an event generator function is employed to regulate the transmission of data to save the precious energy. Then, a non-fragile state estimator is constructed to reflect the randomly occurring gain variations in the implementing process. By means of the Lyapunov-Krasovskii functional, the desired sufficient conditions are obtained such that the Takagi-Sugeno (T-S) fuzzy estimation error system is exponentially ultimately bounded in the mean square. And then the upper bound is minimized via the robust optimization technique and the estimator gain matrices can be calculated. Finally, a simulation example is utilized to demonstrate the effectiveness of the state estimation scheme proposed in this paper.},
author = {Han, Fei, Gao, Wei, Gao, Hongyu, He, Qianqian},
journal = {Kybernetika},
keywords = {Takagi--Sugeno fuzzy system; exponentially ultimately boundness; non-fragile estimation; robust optimization},
language = {eng},
number = {1},
pages = {57-80},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Non-fragile estimation for discrete-time T-S fuzzy systems with event-triggered protocol},
url = {http://eudml.org/doc/297328},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Han, Fei
AU - Gao, Wei
AU - Gao, Hongyu
AU - He, Qianqian
TI - Non-fragile estimation for discrete-time T-S fuzzy systems with event-triggered protocol
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 1
SP - 57
EP - 80
AB - This paper investigates the non-fragile state estimation problem for a class of discrete-time T-S fuzzy systems with time-delays and multiple missing measurements under event-triggered mechanism. First of all, the plant is subject to the time-varying delays and the stochastic disturbances. Next, a random white sequence, the element of which obeys a general probabilistic distribution defined on $[0,1]$, is utilized to formulate the occurrence of the missing measurements. Also, an event generator function is employed to regulate the transmission of data to save the precious energy. Then, a non-fragile state estimator is constructed to reflect the randomly occurring gain variations in the implementing process. By means of the Lyapunov-Krasovskii functional, the desired sufficient conditions are obtained such that the Takagi-Sugeno (T-S) fuzzy estimation error system is exponentially ultimately bounded in the mean square. And then the upper bound is minimized via the robust optimization technique and the estimator gain matrices can be calculated. Finally, a simulation example is utilized to demonstrate the effectiveness of the state estimation scheme proposed in this paper.
LA - eng
KW - Takagi--Sugeno fuzzy system; exponentially ultimately boundness; non-fragile estimation; robust optimization
UR - http://eudml.org/doc/297328
ER -

References

top
  1. Bu, X., Dong, H., Han, F., Hou, N., Li, G., 10.1016/j.neucom.2018.07.087, Neurocomputing 346 (2019), 58-64. MR4044317DOI10.1016/j.neucom.2018.07.087
  2. Chen, W., Ding, D., Ge, X., Han, Q.-L., Wei, G., 10.1109/tcyb.2018.2885567, IEEE Trans. Cybernet. 59 (2020), 4, 1372-1382. DOI10.1109/tcyb.2018.2885567
  3. Chen, W., Zhong, J., Zheng, W., 10.1016/j.automatica.2016.04.031, Automatica 71 (2016), 89-97. MR3521957DOI10.1016/j.automatica.2016.04.031
  4. Ding, D., Han, Q.-L., Wang, Z., Ge, X., 10.1109/tii.2019.2905295, IEEE Trans. Industr. Inform. 15 (2019), 2483-2499. DOI10.1109/tii.2019.2905295
  5. Ding, D., Wang, Z., Han, Q.-L., Wei, G., 10.1109/tii.2019.2905295, IEEE Trans. Cybernet. 49 (2019), 2372-2384. DOI10.1109/tii.2019.2905295
  6. Dong, H., Bu, X., Hou, N., Liu, Y., Alsaadi, F. E., Hayat, T., 10.1016/j.inffus.2016.12.005, Inform. Fusion 36 (2017), 243-250. DOI10.1016/j.inffus.2016.12.005
  7. Ding, D., Wang, Z., Wei, G., Alsaadi, F. E., 10.1049/iet-cta.2016.0135, IET Control Theory Appl. 10 (2016), 1808-1815. MR3587315DOI10.1049/iet-cta.2016.0135
  8. Ge, X., Han, Q.-L., Wang, Z., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernet. 49 (2019),1148-1159. DOI10.1109/tcyb.2017.2789296
  9. Ge, X., Han, Q.-L., Wang, Z., 10.1109/tcyb.2017.2769722, IEEE Trans. Cybernet. 49 (2019), 171-183. DOI10.1109/tcyb.2017.2769722
  10. Ge, X., Han, Q.-L., 10.1109/tcyb.2016.2570860, IEEE Trans. Cybernet. 47 (2017), 1807-1819. DOI10.1109/tcyb.2016.2570860
  11. Gao, M., Yang, S., Sheng, L., Zhou, D., 10.1016/j.neucom.2018.08.087, Neurocomputing 346 (2019), 65-72. DOI10.1016/j.neucom.2018.08.087
  12. Guan, X., Chen, C., 10.1109/TFUZZ.2004.825085, IEEE Trans. Fuzzy System 12 (2004), 236-249. MR2096656DOI10.1109/TFUZZ.2004.825085
  13. Han, F., Song, Y., Zhang, S., Li, W., 10.1016/j.neucom.2016.09.022, Neruocomputing 219 (2017), 221-231. DOI10.1016/j.neucom.2016.09.022
  14. Han, F., Ding, D., Yang., F., Gao, W., 10.1002/rnc.4783, Int. J. Robust Nonlinear Control 30 (2020) 843-863. DOI10.1002/rnc.4783
  15. Hu, J., Chen, D., Du, J., 10.1080/03081079.2014.892251, Int. J. General Systems 43 (2014), 387-401. MR3177030DOI10.1080/03081079.2014.892251
  16. Hu, J., Liang, J., Chen, D., 10.1016/j.jfranklin.2015.02.002, J. Franklin Inst. 352 (2015), 1946-1962. MR3334122DOI10.1016/j.jfranklin.2015.02.002
  17. Liu, Y., Guo, B., Park, J., 10.1016/j.fss.2016.11.001, Fuzzy Sets Systems 316 (2017), 99-116. MR3623196DOI10.1016/j.fss.2016.11.001
  18. Ko, J. W., Park, P. G., 10.1049/iet-cta.2011.0009, IET Control Theory 6 (2012), 313-318. MR2932086DOI10.1049/iet-cta.2011.0009
  19. Liu, Y., Wang, Z., Liang, J., Liu, X., 10.1109/tsmcb.2008.925745, IEEE Trans. Cybernet. 38 (2008), 1314-1325. DOI10.1109/tsmcb.2008.925745
  20. Li, Q., Shen, B., Wang, Z., 10.1016/j.jfranklin.2018.02.007, J. Franklin Inst. 355 (2018), 3104-3121. MR3778262DOI10.1016/j.jfranklin.2018.02.007
  21. Li, Q., Shen, B., Liu, Y., Alsaadi, F. E., 10.1016/j.neucom.2015.10.017, Neurocomputing 174 (2016), 912-920. DOI10.1016/j.neucom.2015.10.017
  22. Li, J., Dong, H., Wang, Z., Bu, X., Partial-Neurons-Based Passivity-Guaranteed state estimation for neural networks with randomly occurring time-delays., IEEE Trans. Neural Networks Learning Syst. (2019), 1-7. 
  23. Li, J., Dong, H., Wang, Z., Hou, N., Alsaadi, F. E., 10.1007/s00521-017-2980-1, Neural Computing Appl. 31 (2019), 65-78. DOI10.1007/s00521-017-2980-1
  24. Lian, Z., He, Y., Zhang, C., 10.1007/s12555-015-2001-z, Int. Control Automat. Syst. 14 (2016), 21-28. MR3774604DOI10.1007/s12555-015-2001-z
  25. Liu, Y., Wang, Z., He, X., Zhou, D., 10.1016/j.automatica.2015.02.022, Automatica 54 (2015), 348-359. MR3324541DOI10.1016/j.automatica.2015.02.022
  26. Liu, Y., Wang, Z., Zhou, D., 10.1080/00207179.2017.1337933, Int. J. Control 91 (2018), 2250-2260. MR3857116DOI10.1080/00207179.2017.1337933
  27. Liu, J., Liu, Q., Cao, J., 10.1016/j.neucom.2015.12.049, Neurocomputing 189 (2016), 86-94. DOI10.1016/j.neucom.2015.12.049
  28. Ma, L., Wang, Z., Liu, Y., Alsaadi, F. E., 10.1002/rnc.3809, Int. J. Robust Nonlinear Control 27 (2017), 4443-4456. MR3733677DOI10.1002/rnc.3809
  29. Shi, P., Zhang, Y., Agarwal, R. K., 10.1016/j.neucom.2014.09.059, Neurocomputing 151 (2015), 168-174. DOI10.1016/j.neucom.2014.09.059
  30. Sheng, L., Niu, Y., Gao, M., 10.1016/j.isatra.2018.11.012, ISA Trans. 87 (2019), 55-67. DOI10.1016/j.isatra.2018.11.012
  31. Sheng, L., Wang, Z., Zou, L., Alsaadi, F., 10.1109/tnnls.2016.2580601, IEEE Trans. Neural Networks Learning Syst. 28 (2017), 2382-2394. MR3709755DOI10.1109/tnnls.2016.2580601
  32. Shen, Y., Wang, Z., Shen, B., Alsaadi, Fa. E., Alsaadi, F. E., 10.1016/j.inffus.2019.08.013, Inform. Fusion 55 (2020), 281-291. DOI10.1016/j.inffus.2019.08.013
  33. Tong, M., Lin, W., Huo, X., Jin, Z., 10.1177/1729881419894417, Int. J. Advanced Robotic Syst. 17 (2020), 1, 1729881419894417. DOI10.1177/1729881419894417
  34. Tian, E., Wang, Z., Zou, L., Yue, D., 10.1002/rnc.4447, Int. J. Robust and Nonlinear Control 29 (2019), 1484-1498. MR3915146DOI10.1002/rnc.4447
  35. Takagi, T., Sugeno, M., Fuzzy identification of systems and its application to modelling and control., IEEE Trans. Systems Man Cybernet. SMC-15 (1985), 116-132 
  36. Yu, Y., Dong, H., Wang, Z., 10.1016/j.neucom.2015.11.079, Neurocomputing 182 (2016), 18-24. DOI10.1016/j.neucom.2015.11.079
  37. Yan, H., Qian, F., Yang, F., 10.1016/j.ins.2015.09.027, Inform. Sci. 370 (2016), 772-782. DOI10.1016/j.ins.2015.09.027
  38. Wang, L., Wang, Z., Huang, T., Wei, G., 10.1109/tcyb.2015.2478860, IEEE Trans. Cybernet. 46 (2016), 2497-2508. DOI10.1109/tcyb.2015.2478860
  39. Wang, F., Wang, Z., Liang, J., 10.1109/tcyb.2018.2821188, IEEE Trans. Cybernet. 49 (2019), 2479-2489. DOI10.1109/tcyb.2018.2821188
  40. Wang, B., Cheng, J., Al-Barakati, A., 10.1016/j.sigpro.2017.05.018, Signal Process. 140 (2017), 161-170. DOI10.1016/j.sigpro.2017.05.018
  41. Wu, L., Su, X., Shi, P., 10.1007/978-3-319-11316-6_4, In: Fuzzy Control Systems with Time-Delay and Stochastic Perturbation, Springer-Cham 2015, 79-113. MR3525793DOI10.1007/978-3-319-11316-6_4
  42. Zhang, L., Ning, Z., Wang, Z., 10.1109/tsmc.2015.2435700, IEEE Trans. Systems Man Cybernet.: Systems 46 (2016), 559-572. DOI10.1109/tsmc.2015.2435700
  43. Zhang, D., Shi, P., Wang, Q., 10.1016/j.fss.2016.02.009, Fuzzy Sets Syst. 306 (2017), 137-152. MR3567161DOI10.1016/j.fss.2016.02.009
  44. Zou, L., Wang, Z., Gao, H., Liu, X., 10.1109/tcyb.2014.2386781, IEEE Trans. Cybernet. 45 (2015), 2804-2815. DOI10.1109/tcyb.2014.2386781
  45. Zhang, S., Wang, Z., Ding, D., Wei, G., Alsaadi, F. E., Hayat, T., 10.1109/tfuzz.2016.2641023, IEEE Trans. Fuzzy Syst. 26 (2018), 142-154. DOI10.1109/tfuzz.2016.2641023
  46. Zhe, D., Zheng, Y., 10.1109/lsp.2006.873148, IEEE Signal Process. Lett. 13 (2006), 493-496. DOI10.1109/lsp.2006.873148
  47. Zhang, X., Han, Q., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C., 10.1109/JAS.2019.1911651, IEEE/CAA J. Automat. Sinica (2019), 1-17. MR3748030DOI10.1109/JAS.2019.1911651
  48. Zuo, Z., Han, Q., Ning, B., Ge, X., Zhang, X., 10.1109/tii.2018.2817248, IEEE Trans. Industr. Inform. 14 (2018), 2322-2334. MR3932129DOI10.1109/tii.2018.2817248

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.