A phase-field method applied to interface tracking for blood clot formation
Applications of Mathematics (2020)
- Volume: 65, Issue: 4, page 447-481
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topČapek, Marek. "A phase-field method applied to interface tracking for blood clot formation." Applications of Mathematics 65.4 (2020): 447-481. <http://eudml.org/doc/297329>.
@article{Čapek2020,
abstract = {The high shear rate thrombus formation was only recently recognized as another way of thrombosis. Models proposed in Weller (2008), (2010) take into account this type of thrombosis. This work uses the phase-field method to model these evolving interface problems. A loosely coupled iterative procedure is introduced to solve the coupled system of equations. Convergence behavior on two levels of refinement of perfusion chamber geometry and cylinder geometry is then studied. The perfusion chamber simulations show good agreement with the original results of Weller. The code is implemented in FEM-library deal.ii Alzeta et al. (2018), which enables distribution of computations to large number of processing units. A scalability and numerical performance study of the loosely coupled iterative procedure is performed, combined with several preconditioners for the linear subproblems.},
author = {Čapek, Marek},
journal = {Applications of Mathematics},
keywords = {thrombus growth; free boundary problem; fluid dynamics; phase field method; finite element method; scalability; high shear rate thrombosis},
language = {eng},
number = {4},
pages = {447-481},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A phase-field method applied to interface tracking for blood clot formation},
url = {http://eudml.org/doc/297329},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Čapek, Marek
TI - A phase-field method applied to interface tracking for blood clot formation
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 447
EP - 481
AB - The high shear rate thrombus formation was only recently recognized as another way of thrombosis. Models proposed in Weller (2008), (2010) take into account this type of thrombosis. This work uses the phase-field method to model these evolving interface problems. A loosely coupled iterative procedure is introduced to solve the coupled system of equations. Convergence behavior on two levels of refinement of perfusion chamber geometry and cylinder geometry is then studied. The perfusion chamber simulations show good agreement with the original results of Weller. The code is implemented in FEM-library deal.ii Alzeta et al. (2018), which enables distribution of computations to large number of processing units. A scalability and numerical performance study of the loosely coupled iterative procedure is performed, combined with several preconditioners for the linear subproblems.
LA - eng
KW - thrombus growth; free boundary problem; fluid dynamics; phase field method; finite element method; scalability; high shear rate thrombosis
UR - http://eudml.org/doc/297329
ER -
References
top- Aarts, P. A., Broek, S. A. van den, Prins, G. W., Kuiken, G. D., Sixma, J. J., Heethaar, R. M., 10.1161/01.atv.8.6.819, Arteriosclerosis 8 (1988), 819-824. (1988) DOI10.1161/01.atv.8.6.819
- Affeld, K., Reininger, A. J., Gadischke, J., Grunert, K., Schmidt, S., Thiele, F., 10.1111/j.1525-1594.1995.tb02387.x, Artif. Organs. 19 (1995), 597-602. (1995) DOI10.1111/j.1525-1594.1995.tb02387.x
- G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmöller, T. Heister, L. Heltai, K. Kormann, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, D. Wells, 10.1515/jnma-2018-0054, J. Numer. Math. 26 (2018), 173-183. (2018) Zbl1410.65363MR3893339DOI10.1515/jnma-2018-0054
- Anand, M., Rajagopal, K., Rajagopal, K. R., 10.1080/10273660412331317415, J. Theor. Med. 5 (2003), 183-218. (2003) Zbl1078.92017MR2158290DOI10.1080/10273660412331317415
- D. Arndt, W. Bangerth, T. C. Clevenger, D. Davydov, M. Fehling, D. Garcia-Sanchez, G. Harper, T. Heister, L. Heltai, M. Kronbichler, R. M. Kynch, M. Maier, J.-P. Pelteret, B. Turcksin, D. Wells, 10.1515/jnma-2019-0064, J. Numer. Math. 27 (2019), 203-213. (2019) Zbl07181764MR4078181DOI10.1515/jnma-2019-0064
- Balay, S, Gropp, W. D., McInnes, L. C., Smith, B. F., PETSc: Portable, Extensible Toolkit for Scientific Computation---Toolkit for Advanced Computation, Available at http://www.mcs.anl.gov/petsc (2018). (2018)
- Bangerth, W., Hartmann, R., Kanschat, G., 10.1145/1268776.1268779, ACM Trans. Math. Softw. 33 (2007), Article ID 24, 27 pages. (2007) Zbl1365.65248MR2404402DOI10.1145/1268776.1268779
- Barlas, G., Multicore and GPU Programming: An Integrated Approach, Morgan Kaufmann Publishers, San Francisco (2015). (2015)
- Bodnár, T., Fasano, A., Sequeira, A., 10.1007/978-3-0348-0822-4_7, Fluid-Structure Interaction and Biomedical Applications T. Bodnár et al. Advances in Mathematical Fluid Mechanics. Birkhäuser/Springer, Basel (2014), 483-569. (2014) Zbl1351.76320MR3329023DOI10.1007/978-3-0348-0822-4_7
- Burstedde, C., Wilcox, L. C., Ghattas, O., 10.1137/100791634, SIAM J. Sci. Comput. 33 (2011), 1103-1133. (2011) Zbl1230.65106MR2800566DOI10.1137/100791634
- Casa, L. D. C., Deaton, D. H., Ku, D. N., 10.1016/j.jvs.2014.12.050, J. Vasc. Surg. 61 (2015), 1068-1080 (2015). (2015) DOI10.1016/j.jvs.2014.12.050
- Casa, L. D. C., Ku, D N., 10.1146/annurev-bioeng-071516-044539, Ann. Rev. Biomed. Eng. 19 (2017), 415-433. (2017) DOI10.1146/annurev-bioeng-071516-044539
- Colman, R. W., Marder, V. J., Clowes, A. W., George, J. N., Goldhaber, S. Z., Hemostasis and Thrombosis: Basic Principles and Clinical Practice, Lippincott Williams & Wilkins, Philadelphia (2005). (2005)
- Fasano, A., Sequeira, A., 10.1007/978-3-319-60513-5_1, Hemomath Modeling, Simulation and Applications 18. Springer, Cham (2017), 1-77. (2017) MR3727113DOI10.1007/978-3-319-60513-5_1
- Gross, S., Reusken, A., 10.1007/978-3-642-19686-7, Springer Series in Computational Mathematics 40. Springer, Berlin (2011). (2011) Zbl1222.76002MR2799400DOI10.1007/978-3-642-19686-7
- Guermond, J. L., Minev, P., Shen, J., 10.1016/j.cma.2005.10.010, Comput. Methods Appl. Mech. Eng. 195 (2006), 6011-6045. (2006) Zbl1122.76072MR2250931DOI10.1016/j.cma.2005.10.010
- M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, K. S. Stanley, 10.1145/1089014.1089021, ACM Trans. Math. Softw. 31 (2005), 397-423. (2005) Zbl1136.65354MR2266800DOI10.1145/1089014.1089021
- al., V. Huck et, A2 - Research. Available at http://www.shenc.de/A2-Huck-res.htm, .
- Karypis, G., Kumar, V., MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 4.0, Available at http://www.cs.umn.edu/ {metis}, 2009.
- Key, N. S., Makris, M., Lillicrap, D., eds., 10.1002/9781118344729, John Wiley, Chichester (2017). (2017) DOI10.1002/9781118344729
- Kuzmin, D., Introduction to Computational Fluid Dynamics, Available at http://www.mathematik.uni-dortmund.de/ {kuzmin/cfdintro/lecture8.pdf}, 2010.
- Li, X., Lowengrub, J., Rätz, A., Voigt, A., 10.4310/CMS.2009.v7.n1.a4, Commun. Math. Sci. 7 (2009), 81-107. (2009) Zbl1178.35027MR2512834DOI10.4310/CMS.2009.v7.n1.a4
- Mohan, A., Modeling the Growth and Dissolution of Clots in Flowing Blood, PhD Thesis, Texas A&M University, College Station (2005). (2005)
- Osher, S., Fedkiw, R., 10.1007/b98879, Applied Mathematical Sciences 153. Springer, New York (2003). (2003) Zbl1026.76001MR1939127DOI10.1007/b98879
- Reinders, J., Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor Parallelism, O'Reilly, Sebastopol (2007). (2007)
- Sakariassen, K. S., Orning, L., Turitto, V. T., 10.4155/fso.15.28, Future Sci. OA 1 (2015), Article ID FSO30. (2015) DOI10.4155/fso.15.28
- Sethian, J. A., Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Monographs on Applied and Computational Mathematics 3. Cambridge University Press, Cambridge (1999). (1999) Zbl0973.76003MR1700751
- Tokarev, A. A., Butylin, A. A., Ataullakhanov, F. I., 10.1016/j.bpj.2010.12.3740, Biophys. J. 100 (2011), 799-808. (2011) DOI10.1016/j.bpj.2010.12.3740
- Tokarev, A., Sirakov, I., Panasenko, G., Volpert, V., Shnol, E., Butylin, A., Ataullakhanov, F., 10.1515/rnam-2012-0011, Russ. J. Numer. Anal. Math. Model. 27 (2012), 191-212. (2012) Zbl06032989MR2910582DOI10.1515/rnam-2012-0011
- Turek, S., 10.1007/978-3-642-58393-3, Lecture Notes in Computational Science and Engineering 6. Springer, Berlin (1999). (1999) Zbl0930.76002MR1691839DOI10.1007/978-3-642-58393-3
- Weller, F., 10.11588/heidok.00008558, Ruprecht-Karls-Universität, Heidelberg (2008). (2008) DOI10.11588/heidok.00008558
- Weller, F. F., 10.1007/s00285-008-0163-5, J. Math. Biol. 57 (2008), 333-359. (2008) Zbl1149.35332MR2411224DOI10.1007/s00285-008-0163-5
- Weller, F. F., 10.1007/s00285-009-0324-1, J. Math. Biol. 61 (2010), 805-818. (2010) Zbl1205.92010MR2726451DOI10.1007/s00285-009-0324-1
- Xu, Z., Chen, N., Shadden, S. C., Marsden, J. E., Kamocka, M. M., Rosen, E. D., Alber, M., 10.1039/B812429A, Soft Matter 5 (2009), 769-779. (2009) DOI10.1039/B812429A
- Zlobina, K. E., Guria, G. Th., 10.1038/srep30508, Scientific Reports 6 (2016), Article ID 30508. (2016) DOI10.1038/srep30508
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.