A phase-field method applied to interface tracking for blood clot formation

Marek Čapek

Applications of Mathematics (2020)

  • Volume: 65, Issue: 4, page 447-481
  • ISSN: 0862-7940

Abstract

top
The high shear rate thrombus formation was only recently recognized as another way of thrombosis. Models proposed in Weller (2008), (2010) take into account this type of thrombosis. This work uses the phase-field method to model these evolving interface problems. A loosely coupled iterative procedure is introduced to solve the coupled system of equations. Convergence behavior on two levels of refinement of perfusion chamber geometry and cylinder geometry is then studied. The perfusion chamber simulations show good agreement with the original results of Weller. The code is implemented in FEM-library deal.ii Alzeta et al. (2018), which enables distribution of computations to large number of processing units. A scalability and numerical performance study of the loosely coupled iterative procedure is performed, combined with several preconditioners for the linear subproblems.

How to cite

top

Čapek, Marek. "A phase-field method applied to interface tracking for blood clot formation." Applications of Mathematics 65.4 (2020): 447-481. <http://eudml.org/doc/297329>.

@article{Čapek2020,
abstract = {The high shear rate thrombus formation was only recently recognized as another way of thrombosis. Models proposed in Weller (2008), (2010) take into account this type of thrombosis. This work uses the phase-field method to model these evolving interface problems. A loosely coupled iterative procedure is introduced to solve the coupled system of equations. Convergence behavior on two levels of refinement of perfusion chamber geometry and cylinder geometry is then studied. The perfusion chamber simulations show good agreement with the original results of Weller. The code is implemented in FEM-library deal.ii Alzeta et al. (2018), which enables distribution of computations to large number of processing units. A scalability and numerical performance study of the loosely coupled iterative procedure is performed, combined with several preconditioners for the linear subproblems.},
author = {Čapek, Marek},
journal = {Applications of Mathematics},
keywords = {thrombus growth; free boundary problem; fluid dynamics; phase field method; finite element method; scalability; high shear rate thrombosis},
language = {eng},
number = {4},
pages = {447-481},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A phase-field method applied to interface tracking for blood clot formation},
url = {http://eudml.org/doc/297329},
volume = {65},
year = {2020},
}

TY - JOUR
AU - Čapek, Marek
TI - A phase-field method applied to interface tracking for blood clot formation
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 447
EP - 481
AB - The high shear rate thrombus formation was only recently recognized as another way of thrombosis. Models proposed in Weller (2008), (2010) take into account this type of thrombosis. This work uses the phase-field method to model these evolving interface problems. A loosely coupled iterative procedure is introduced to solve the coupled system of equations. Convergence behavior on two levels of refinement of perfusion chamber geometry and cylinder geometry is then studied. The perfusion chamber simulations show good agreement with the original results of Weller. The code is implemented in FEM-library deal.ii Alzeta et al. (2018), which enables distribution of computations to large number of processing units. A scalability and numerical performance study of the loosely coupled iterative procedure is performed, combined with several preconditioners for the linear subproblems.
LA - eng
KW - thrombus growth; free boundary problem; fluid dynamics; phase field method; finite element method; scalability; high shear rate thrombosis
UR - http://eudml.org/doc/297329
ER -

References

top
  1. Aarts, P. A., Broek, S. A. van den, Prins, G. W., Kuiken, G. D., Sixma, J. J., Heethaar, R. M., 10.1161/01.atv.8.6.819, Arteriosclerosis 8 (1988), 819-824. (1988) DOI10.1161/01.atv.8.6.819
  2. Affeld, K., Reininger, A. J., Gadischke, J., Grunert, K., Schmidt, S., Thiele, F., 10.1111/j.1525-1594.1995.tb02387.x, Artif. Organs. 19 (1995), 597-602. (1995) DOI10.1111/j.1525-1594.1995.tb02387.x
  3. G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmöller, T. Heister, L. Heltai, K. Kormann, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, D. Wells, 10.1515/jnma-2018-0054, J. Numer. Math. 26 (2018), 173-183. (2018) Zbl1410.65363MR3893339DOI10.1515/jnma-2018-0054
  4. Anand, M., Rajagopal, K., Rajagopal, K. R., 10.1080/10273660412331317415, J. Theor. Med. 5 (2003), 183-218. (2003) Zbl1078.92017MR2158290DOI10.1080/10273660412331317415
  5. D. Arndt, W. Bangerth, T. C. Clevenger, D. Davydov, M. Fehling, D. Garcia-Sanchez, G. Harper, T. Heister, L. Heltai, M. Kronbichler, R. M. Kynch, M. Maier, J.-P. Pelteret, B. Turcksin, D. Wells, 10.1515/jnma-2019-0064, J. Numer. Math. 27 (2019), 203-213. (2019) Zbl07181764MR4078181DOI10.1515/jnma-2019-0064
  6. Balay, S, Gropp, W. D., McInnes, L. C., Smith, B. F., PETSc: Portable, Extensible Toolkit for Scientific Computation---Toolkit for Advanced Computation, Available at http://www.mcs.anl.gov/petsc (2018). (2018) 
  7. Bangerth, W., Hartmann, R., Kanschat, G., 10.1145/1268776.1268779, ACM Trans. Math. Softw. 33 (2007), Article ID 24, 27 pages. (2007) Zbl1365.65248MR2404402DOI10.1145/1268776.1268779
  8. Barlas, G., Multicore and GPU Programming: An Integrated Approach, Morgan Kaufmann Publishers, San Francisco (2015). (2015) 
  9. Bodnár, T., Fasano, A., Sequeira, A., 10.1007/978-3-0348-0822-4_7, Fluid-Structure Interaction and Biomedical Applications T. Bodnár et al. Advances in Mathematical Fluid Mechanics. Birkhäuser/Springer, Basel (2014), 483-569. (2014) Zbl1351.76320MR3329023DOI10.1007/978-3-0348-0822-4_7
  10. Burstedde, C., Wilcox, L. C., Ghattas, O., 10.1137/100791634, SIAM J. Sci. Comput. 33 (2011), 1103-1133. (2011) Zbl1230.65106MR2800566DOI10.1137/100791634
  11. Casa, L. D. C., Deaton, D. H., Ku, D. N., 10.1016/j.jvs.2014.12.050, J. Vasc. Surg. 61 (2015), 1068-1080 (2015). (2015) DOI10.1016/j.jvs.2014.12.050
  12. Casa, L. D. C., Ku, D N., 10.1146/annurev-bioeng-071516-044539, Ann. Rev. Biomed. Eng. 19 (2017), 415-433. (2017) DOI10.1146/annurev-bioeng-071516-044539
  13. Colman, R. W., Marder, V. J., Clowes, A. W., George, J. N., Goldhaber, S. Z., Hemostasis and Thrombosis: Basic Principles and Clinical Practice, Lippincott Williams & Wilkins, Philadelphia (2005). (2005) 
  14. Fasano, A., Sequeira, A., 10.1007/978-3-319-60513-5_1, Hemomath Modeling, Simulation and Applications 18. Springer, Cham (2017), 1-77. (2017) MR3727113DOI10.1007/978-3-319-60513-5_1
  15. Gross, S., Reusken, A., 10.1007/978-3-642-19686-7, Springer Series in Computational Mathematics 40. Springer, Berlin (2011). (2011) Zbl1222.76002MR2799400DOI10.1007/978-3-642-19686-7
  16. Guermond, J. L., Minev, P., Shen, J., 10.1016/j.cma.2005.10.010, Comput. Methods Appl. Mech. Eng. 195 (2006), 6011-6045. (2006) Zbl1122.76072MR2250931DOI10.1016/j.cma.2005.10.010
  17. M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, K. S. Stanley, 10.1145/1089014.1089021, ACM Trans. Math. Softw. 31 (2005), 397-423. (2005) Zbl1136.65354MR2266800DOI10.1145/1089014.1089021
  18. al., V. Huck et, A2 - Research. Available at http://www.shenc.de/A2-Huck-res.htm, . 
  19. Karypis, G., Kumar, V., MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 4.0, Available at http://www.cs.umn.edu/ {metis}, 2009. 
  20. Key, N. S., Makris, M., Lillicrap, D., eds., 10.1002/9781118344729, John Wiley, Chichester (2017). (2017) DOI10.1002/9781118344729
  21. Kuzmin, D., Introduction to Computational Fluid Dynamics, Available at http://www.mathematik.uni-dortmund.de/ {kuzmin/cfdintro/lecture8.pdf}, 2010. 
  22. Li, X., Lowengrub, J., Rätz, A., Voigt, A., 10.4310/CMS.2009.v7.n1.a4, Commun. Math. Sci. 7 (2009), 81-107. (2009) Zbl1178.35027MR2512834DOI10.4310/CMS.2009.v7.n1.a4
  23. Mohan, A., Modeling the Growth and Dissolution of Clots in Flowing Blood, PhD Thesis, Texas A&M University, College Station (2005). (2005) 
  24. Osher, S., Fedkiw, R., 10.1007/b98879, Applied Mathematical Sciences 153. Springer, New York (2003). (2003) Zbl1026.76001MR1939127DOI10.1007/b98879
  25. Reinders, J., Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor Parallelism, O'Reilly, Sebastopol (2007). (2007) 
  26. Sakariassen, K. S., Orning, L., Turitto, V. T., 10.4155/fso.15.28, Future Sci. OA 1 (2015), Article ID FSO30. (2015) DOI10.4155/fso.15.28
  27. Sethian, J. A., Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Monographs on Applied and Computational Mathematics 3. Cambridge University Press, Cambridge (1999). (1999) Zbl0973.76003MR1700751
  28. Tokarev, A. A., Butylin, A. A., Ataullakhanov, F. I., 10.1016/j.bpj.2010.12.3740, Biophys. J. 100 (2011), 799-808. (2011) DOI10.1016/j.bpj.2010.12.3740
  29. Tokarev, A., Sirakov, I., Panasenko, G., Volpert, V., Shnol, E., Butylin, A., Ataullakhanov, F., 10.1515/rnam-2012-0011, Russ. J. Numer. Anal. Math. Model. 27 (2012), 191-212. (2012) Zbl06032989MR2910582DOI10.1515/rnam-2012-0011
  30. Turek, S., 10.1007/978-3-642-58393-3, Lecture Notes in Computational Science and Engineering 6. Springer, Berlin (1999). (1999) Zbl0930.76002MR1691839DOI10.1007/978-3-642-58393-3
  31. Weller, F., 10.11588/heidok.00008558, Ruprecht-Karls-Universität, Heidelberg (2008). (2008) DOI10.11588/heidok.00008558
  32. Weller, F. F., 10.1007/s00285-008-0163-5, J. Math. Biol. 57 (2008), 333-359. (2008) Zbl1149.35332MR2411224DOI10.1007/s00285-008-0163-5
  33. Weller, F. F., 10.1007/s00285-009-0324-1, J. Math. Biol. 61 (2010), 805-818. (2010) Zbl1205.92010MR2726451DOI10.1007/s00285-009-0324-1
  34. Xu, Z., Chen, N., Shadden, S. C., Marsden, J. E., Kamocka, M. M., Rosen, E. D., Alber, M., 10.1039/B812429A, Soft Matter 5 (2009), 769-779. (2009) DOI10.1039/B812429A
  35. Zlobina, K. E., Guria, G. Th., 10.1038/srep30508, Scientific Reports 6 (2016), Article ID 30508. (2016) DOI10.1038/srep30508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.