Hyperbolic inverse mean curvature flow

Jing Mao; Chuan-Xi Wu; Zhe Zhou

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 1, page 33-66
  • ISSN: 0011-4642

Abstract

top
We prove the short-time existence of the hyperbolic inverse (mean) curvature flow (with or without the specified forcing term) under the assumption that the initial compact smooth hypersurface of n + 1 ( n 2 ) is mean convex and star-shaped. Several interesting examples and some hyperbolic evolution equations for geometric quantities of the evolving hypersurfaces are shown. Besides, under different assumptions for the initial velocity, we can get the expansion and the convergence results of a hyperbolic inverse mean curvature flow in the plane 2 , whose evolving curves move normally.

How to cite

top

Mao, Jing, Wu, Chuan-Xi, and Zhou, Zhe. "Hyperbolic inverse mean curvature flow." Czechoslovak Mathematical Journal 70.1 (2020): 33-66. <http://eudml.org/doc/297330>.

@article{Mao2020,
abstract = {We prove the short-time existence of the hyperbolic inverse (mean) curvature flow (with or without the specified forcing term) under the assumption that the initial compact smooth hypersurface of $\mathbb \{R\}^\{n+1\}$ ($n\ge 2$) is mean convex and star-shaped. Several interesting examples and some hyperbolic evolution equations for geometric quantities of the evolving hypersurfaces are shown. Besides, under different assumptions for the initial velocity, we can get the expansion and the convergence results of a hyperbolic inverse mean curvature flow in the plane $\mathbb \{R\}^2$, whose evolving curves move normally.},
author = {Mao, Jing, Wu, Chuan-Xi, Zhou, Zhe},
journal = {Czechoslovak Mathematical Journal},
keywords = {evolution equation; hyperbolic inverse mean curvature flow; short time existence},
language = {eng},
number = {1},
pages = {33-66},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hyperbolic inverse mean curvature flow},
url = {http://eudml.org/doc/297330},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Mao, Jing
AU - Wu, Chuan-Xi
AU - Zhou, Zhe
TI - Hyperbolic inverse mean curvature flow
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 33
EP - 66
AB - We prove the short-time existence of the hyperbolic inverse (mean) curvature flow (with or without the specified forcing term) under the assumption that the initial compact smooth hypersurface of $\mathbb {R}^{n+1}$ ($n\ge 2$) is mean convex and star-shaped. Several interesting examples and some hyperbolic evolution equations for geometric quantities of the evolving hypersurfaces are shown. Besides, under different assumptions for the initial velocity, we can get the expansion and the convergence results of a hyperbolic inverse mean curvature flow in the plane $\mathbb {R}^2$, whose evolving curves move normally.
LA - eng
KW - evolution equation; hyperbolic inverse mean curvature flow; short time existence
UR - http://eudml.org/doc/297330
ER -

References

top
  1. Bray, H., 10.4310/jdg/1090349428, J. Differ. Geom. 59 (2001), 177-267. (2001) Zbl1039.53034MR1908823DOI10.4310/jdg/1090349428
  2. Brendle, S., Hung, P.-K., Wang, M.-T., 10.1002/cpa.21556, Commun. Pure Appl. Math. 69 (2016), 124-144. (2016) Zbl1331.53078MR3433631DOI10.1002/cpa.21556
  3. Caffarelli, L., Nirenberg, L., Spruck, J., 10.1007/BF02392544, Acta Math. 155 (1985), 261-301. (1985) Zbl0654.35031MR0806416DOI10.1007/BF02392544
  4. Cao, F., 10.1007/b10404, Lecture Notes in Mathematics 1805, Springer, Berlin (2003). (2003) Zbl1290.35001MR1976551DOI10.1007/b10404
  5. Chen, L., Mao, J., 10.1007/s12220-017-9848-6, J. Geom. Anal. 28 (2018), 921-949. (2018) Zbl1393.53056MR3790487DOI10.1007/s12220-017-9848-6
  6. Chen, L., Mao, J., Xiang, N., Xu,, C., Inverse mean curvature flow inside a cone in warped products, Available at https://arxiv.org/abs/1705.04865 (2017), 12 pages. (2017) 
  7. Evans, L.-C., Partial Differential Equations, Graduate Studies in Mathematics 19, American Mathematical Society, Providence (1998). (1998) Zbl0902.35002MR1625845
  8. Gerhardt, C., 10.4310/jdg/1214445048, J. Differential Geom. 32 (1990), 299-314. (1990) Zbl0708.53045MR1064876DOI10.4310/jdg/1214445048
  9. He, C.-L., Kong, D.-X., Liu, K.-F., 10.1016/j.jde.2008.06.026, J. Differ. Equations 246 (2009), 373-390. (2009) Zbl1159.53024MR2467029DOI10.1016/j.jde.2008.06.026
  10. Hörmander, L., Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications 26, Springer, Berlin (1997). (1997) Zbl0881.35001MR1466700
  11. Huisken, G., 10.4310/jdg/1214438998, J. Differ. Geom. 20 (1984), 237-266. (1984) Zbl0556.53001MR0772132DOI10.4310/jdg/1214438998
  12. Huisken, G., Ilmanen, T., 10.4310/jdg/1090349447, J. Differ. Geom. 59 (2001), 353-437. (2001) Zbl1055.53052MR1916951DOI10.4310/jdg/1090349447
  13. Kong, D.-X., Liu, K.-F., Wang, Z.-G., 10.1016/S0252-9602(09)60049-7, Acta Math. Sci., Ser B 29 (2009), 493-514. (2009) Zbl1212.58018MR2514356DOI10.1016/S0252-9602(09)60049-7
  14. Mao, J., 10.2996/kmj/1352985451, Kodai Math. J. 35 (2012), 500-522. (2012) Zbl1277.58012MR2997477DOI10.2996/kmj/1352985451
  15. Marquardt, T., 10.1007/s12220-011-9288-7, J. Geom. Anal. 23 (2013), 1303-1313. (2013) Zbl1317.53087MR3078355DOI10.1007/s12220-011-9288-7
  16. Pipoli, G., 10.4171/RLM/798, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), 153-171. (2018) Zbl1391.53079MR3787725DOI10.4171/RLM/798
  17. Pipoli, G., Inverse mean curvature flow in complex hyperbolic space, Available at https://arxiv.org/abs/1610.01886 (2017), 31 pages. (2017) MR3787725
  18. Protter, M.-H., Weinberger, H.-F., Maximum Principles in Differential Equations, Springer, New York (1984). (1984) Zbl0549.35002MR0762825
  19. Scheuer, J., 10.1016/j.aim.2016.11.003, Adv. Math. 306 (2017), 1130-1163. (2017) Zbl1357.53080MR3581327DOI10.1016/j.aim.2016.11.003
  20. Schneider, R., 10.1017/CBO9780511526282, Encyclopedia of Mathematics and Its Applications 44, Cambridge University Press, Cambridge (1993). (1993) Zbl0798.52001MR1216521DOI10.1017/CBO9780511526282
  21. Topping, P., 10.1515/crll.1998.099, J. Reine Angew. Math. 503 (1998), 47-61. (1998) Zbl0909.53044MR1650335DOI10.1515/crll.1998.099
  22. Yau, S.-T., 10.4310/AJM.2000.v4.n1.a16, Asian J. Math. 4 (2000), 235-278. (2000) Zbl1031.53004MR1803723DOI10.4310/AJM.2000.v4.n1.a16
  23. Zhou, H.-Y., 10.1007/s12220-017-9887-z, J. Geom. Anal. 28 (2018), 1749-1772. (2018) Zbl1393.53069MR3790519DOI10.1007/s12220-017-9887-z
  24. Zhu, X.-P., 10.1090/amsip/032, AMS/IP Studies in Advanced Mathematics 32, American Mathematical Society, Providence (2002). (2002) Zbl1197.53087MR1931534DOI10.1090/amsip/032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.