Hyperbolic inverse mean curvature flow
Jing Mao; Chuan-Xi Wu; Zhe Zhou
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 1, page 33-66
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- Bray, H., 10.4310/jdg/1090349428, J. Differ. Geom. 59 (2001), 177-267. (2001) Zbl1039.53034MR1908823DOI10.4310/jdg/1090349428
- Brendle, S., Hung, P.-K., Wang, M.-T., 10.1002/cpa.21556, Commun. Pure Appl. Math. 69 (2016), 124-144. (2016) Zbl1331.53078MR3433631DOI10.1002/cpa.21556
- Caffarelli, L., Nirenberg, L., Spruck, J., 10.1007/BF02392544, Acta Math. 155 (1985), 261-301. (1985) Zbl0654.35031MR0806416DOI10.1007/BF02392544
- Cao, F., 10.1007/b10404, Lecture Notes in Mathematics 1805, Springer, Berlin (2003). (2003) Zbl1290.35001MR1976551DOI10.1007/b10404
- Chen, L., Mao, J., 10.1007/s12220-017-9848-6, J. Geom. Anal. 28 (2018), 921-949. (2018) Zbl1393.53056MR3790487DOI10.1007/s12220-017-9848-6
- Chen, L., Mao, J., Xiang, N., Xu,, C., Inverse mean curvature flow inside a cone in warped products, Available at https://arxiv.org/abs/1705.04865 (2017), 12 pages. (2017)
- Evans, L.-C., Partial Differential Equations, Graduate Studies in Mathematics 19, American Mathematical Society, Providence (1998). (1998) Zbl0902.35002MR1625845
- Gerhardt, C., 10.4310/jdg/1214445048, J. Differential Geom. 32 (1990), 299-314. (1990) Zbl0708.53045MR1064876DOI10.4310/jdg/1214445048
- He, C.-L., Kong, D.-X., Liu, K.-F., 10.1016/j.jde.2008.06.026, J. Differ. Equations 246 (2009), 373-390. (2009) Zbl1159.53024MR2467029DOI10.1016/j.jde.2008.06.026
- Hörmander, L., Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications 26, Springer, Berlin (1997). (1997) Zbl0881.35001MR1466700
- Huisken, G., 10.4310/jdg/1214438998, J. Differ. Geom. 20 (1984), 237-266. (1984) Zbl0556.53001MR0772132DOI10.4310/jdg/1214438998
- Huisken, G., Ilmanen, T., 10.4310/jdg/1090349447, J. Differ. Geom. 59 (2001), 353-437. (2001) Zbl1055.53052MR1916951DOI10.4310/jdg/1090349447
- Kong, D.-X., Liu, K.-F., Wang, Z.-G., 10.1016/S0252-9602(09)60049-7, Acta Math. Sci., Ser B 29 (2009), 493-514. (2009) Zbl1212.58018MR2514356DOI10.1016/S0252-9602(09)60049-7
- Mao, J., 10.2996/kmj/1352985451, Kodai Math. J. 35 (2012), 500-522. (2012) Zbl1277.58012MR2997477DOI10.2996/kmj/1352985451
- Marquardt, T., 10.1007/s12220-011-9288-7, J. Geom. Anal. 23 (2013), 1303-1313. (2013) Zbl1317.53087MR3078355DOI10.1007/s12220-011-9288-7
- Pipoli, G., 10.4171/RLM/798, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), 153-171. (2018) Zbl1391.53079MR3787725DOI10.4171/RLM/798
- Pipoli, G., Inverse mean curvature flow in complex hyperbolic space, Available at https://arxiv.org/abs/1610.01886 (2017), 31 pages. (2017) MR3787725
- Protter, M.-H., Weinberger, H.-F., Maximum Principles in Differential Equations, Springer, New York (1984). (1984) Zbl0549.35002MR0762825
- Scheuer, J., 10.1016/j.aim.2016.11.003, Adv. Math. 306 (2017), 1130-1163. (2017) Zbl1357.53080MR3581327DOI10.1016/j.aim.2016.11.003
- Schneider, R., 10.1017/CBO9780511526282, Encyclopedia of Mathematics and Its Applications 44, Cambridge University Press, Cambridge (1993). (1993) Zbl0798.52001MR1216521DOI10.1017/CBO9780511526282
- Topping, P., 10.1515/crll.1998.099, J. Reine Angew. Math. 503 (1998), 47-61. (1998) Zbl0909.53044MR1650335DOI10.1515/crll.1998.099
- Yau, S.-T., 10.4310/AJM.2000.v4.n1.a16, Asian J. Math. 4 (2000), 235-278. (2000) Zbl1031.53004MR1803723DOI10.4310/AJM.2000.v4.n1.a16
- Zhou, H.-Y., 10.1007/s12220-017-9887-z, J. Geom. Anal. 28 (2018), 1749-1772. (2018) Zbl1393.53069MR3790519DOI10.1007/s12220-017-9887-z
- Zhu, X.-P., 10.1090/amsip/032, AMS/IP Studies in Advanced Mathematics 32, American Mathematical Society, Providence (2002). (2002) Zbl1197.53087MR1931534DOI10.1090/amsip/032