Hyperbolic inverse mean curvature flow
Jing Mao; Chuan-Xi Wu; Zhe Zhou
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 1, page 33-66
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMao, Jing, Wu, Chuan-Xi, and Zhou, Zhe. "Hyperbolic inverse mean curvature flow." Czechoslovak Mathematical Journal 70.1 (2020): 33-66. <http://eudml.org/doc/297330>.
@article{Mao2020,
abstract = {We prove the short-time existence of the hyperbolic inverse (mean) curvature flow (with or without the specified forcing term) under the assumption that the initial compact smooth hypersurface of $\mathbb \{R\}^\{n+1\}$ ($n\ge 2$) is mean convex and star-shaped. Several interesting examples and some hyperbolic evolution equations for geometric quantities of the evolving hypersurfaces are shown. Besides, under different assumptions for the initial velocity, we can get the expansion and the convergence results of a hyperbolic inverse mean curvature flow in the plane $\mathbb \{R\}^2$, whose evolving curves move normally.},
author = {Mao, Jing, Wu, Chuan-Xi, Zhou, Zhe},
journal = {Czechoslovak Mathematical Journal},
keywords = {evolution equation; hyperbolic inverse mean curvature flow; short time existence},
language = {eng},
number = {1},
pages = {33-66},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hyperbolic inverse mean curvature flow},
url = {http://eudml.org/doc/297330},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Mao, Jing
AU - Wu, Chuan-Xi
AU - Zhou, Zhe
TI - Hyperbolic inverse mean curvature flow
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 33
EP - 66
AB - We prove the short-time existence of the hyperbolic inverse (mean) curvature flow (with or without the specified forcing term) under the assumption that the initial compact smooth hypersurface of $\mathbb {R}^{n+1}$ ($n\ge 2$) is mean convex and star-shaped. Several interesting examples and some hyperbolic evolution equations for geometric quantities of the evolving hypersurfaces are shown. Besides, under different assumptions for the initial velocity, we can get the expansion and the convergence results of a hyperbolic inverse mean curvature flow in the plane $\mathbb {R}^2$, whose evolving curves move normally.
LA - eng
KW - evolution equation; hyperbolic inverse mean curvature flow; short time existence
UR - http://eudml.org/doc/297330
ER -
References
top- Bray, H., 10.4310/jdg/1090349428, J. Differ. Geom. 59 (2001), 177-267. (2001) Zbl1039.53034MR1908823DOI10.4310/jdg/1090349428
- Brendle, S., Hung, P.-K., Wang, M.-T., 10.1002/cpa.21556, Commun. Pure Appl. Math. 69 (2016), 124-144. (2016) Zbl1331.53078MR3433631DOI10.1002/cpa.21556
- Caffarelli, L., Nirenberg, L., Spruck, J., 10.1007/BF02392544, Acta Math. 155 (1985), 261-301. (1985) Zbl0654.35031MR0806416DOI10.1007/BF02392544
- Cao, F., 10.1007/b10404, Lecture Notes in Mathematics 1805, Springer, Berlin (2003). (2003) Zbl1290.35001MR1976551DOI10.1007/b10404
- Chen, L., Mao, J., 10.1007/s12220-017-9848-6, J. Geom. Anal. 28 (2018), 921-949. (2018) Zbl1393.53056MR3790487DOI10.1007/s12220-017-9848-6
- Chen, L., Mao, J., Xiang, N., Xu,, C., Inverse mean curvature flow inside a cone in warped products, Available at https://arxiv.org/abs/1705.04865 (2017), 12 pages. (2017)
- Evans, L.-C., Partial Differential Equations, Graduate Studies in Mathematics 19, American Mathematical Society, Providence (1998). (1998) Zbl0902.35002MR1625845
- Gerhardt, C., 10.4310/jdg/1214445048, J. Differential Geom. 32 (1990), 299-314. (1990) Zbl0708.53045MR1064876DOI10.4310/jdg/1214445048
- He, C.-L., Kong, D.-X., Liu, K.-F., 10.1016/j.jde.2008.06.026, J. Differ. Equations 246 (2009), 373-390. (2009) Zbl1159.53024MR2467029DOI10.1016/j.jde.2008.06.026
- Hörmander, L., Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications 26, Springer, Berlin (1997). (1997) Zbl0881.35001MR1466700
- Huisken, G., 10.4310/jdg/1214438998, J. Differ. Geom. 20 (1984), 237-266. (1984) Zbl0556.53001MR0772132DOI10.4310/jdg/1214438998
- Huisken, G., Ilmanen, T., 10.4310/jdg/1090349447, J. Differ. Geom. 59 (2001), 353-437. (2001) Zbl1055.53052MR1916951DOI10.4310/jdg/1090349447
- Kong, D.-X., Liu, K.-F., Wang, Z.-G., 10.1016/S0252-9602(09)60049-7, Acta Math. Sci., Ser B 29 (2009), 493-514. (2009) Zbl1212.58018MR2514356DOI10.1016/S0252-9602(09)60049-7
- Mao, J., 10.2996/kmj/1352985451, Kodai Math. J. 35 (2012), 500-522. (2012) Zbl1277.58012MR2997477DOI10.2996/kmj/1352985451
- Marquardt, T., 10.1007/s12220-011-9288-7, J. Geom. Anal. 23 (2013), 1303-1313. (2013) Zbl1317.53087MR3078355DOI10.1007/s12220-011-9288-7
- Pipoli, G., 10.4171/RLM/798, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), 153-171. (2018) Zbl1391.53079MR3787725DOI10.4171/RLM/798
- Pipoli, G., Inverse mean curvature flow in complex hyperbolic space, Available at https://arxiv.org/abs/1610.01886 (2017), 31 pages. (2017) MR3787725
- Protter, M.-H., Weinberger, H.-F., Maximum Principles in Differential Equations, Springer, New York (1984). (1984) Zbl0549.35002MR0762825
- Scheuer, J., 10.1016/j.aim.2016.11.003, Adv. Math. 306 (2017), 1130-1163. (2017) Zbl1357.53080MR3581327DOI10.1016/j.aim.2016.11.003
- Schneider, R., 10.1017/CBO9780511526282, Encyclopedia of Mathematics and Its Applications 44, Cambridge University Press, Cambridge (1993). (1993) Zbl0798.52001MR1216521DOI10.1017/CBO9780511526282
- Topping, P., 10.1515/crll.1998.099, J. Reine Angew. Math. 503 (1998), 47-61. (1998) Zbl0909.53044MR1650335DOI10.1515/crll.1998.099
- Yau, S.-T., 10.4310/AJM.2000.v4.n1.a16, Asian J. Math. 4 (2000), 235-278. (2000) Zbl1031.53004MR1803723DOI10.4310/AJM.2000.v4.n1.a16
- Zhou, H.-Y., 10.1007/s12220-017-9887-z, J. Geom. Anal. 28 (2018), 1749-1772. (2018) Zbl1393.53069MR3790519DOI10.1007/s12220-017-9887-z
- Zhu, X.-P., 10.1090/amsip/032, AMS/IP Studies in Advanced Mathematics 32, American Mathematical Society, Providence (2002). (2002) Zbl1197.53087MR1931534DOI10.1090/amsip/032
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.