-hypercyclic and disjoint -hypercyclic properties of binary relations over topological spaces

Marko Kostić

Mathematica Bohemica (2020)

  • Volume: 145, Issue: 4, page 337-359
  • ISSN: 0862-7959

Abstract

top
We examine various types of -hypercyclic ( -topologically transitive) and disjoint -hypercyclic (disjoint -topologically transitive) properties of binary relations over topological spaces. We pay special attention to finite structures like simple graphs, digraphs and tournaments, providing a great number of illustrative examples.

How to cite

top

Kostić, Marko. "$\mathcal {F}$-hypercyclic and disjoint $\mathcal {F}$-hypercyclic properties of binary relations over topological spaces." Mathematica Bohemica 145.4 (2020): 337-359. <http://eudml.org/doc/297332>.

@article{Kostić2020,
abstract = {We examine various types of $\mathcal \{F\}$-hypercyclic ($\mathcal \{F\}$-topologically transitive) and disjoint $\mathcal \{F\}$-hypercyclic (disjoint $\mathcal \{F\}$-topologically transitive) properties of binary relations over topological spaces. We pay special attention to finite structures like simple graphs, digraphs and tournaments, providing a great number of illustrative examples.},
author = {Kostić, Marko},
journal = {Mathematica Bohemica},
keywords = {$\{\mathcal \{F\}\}$-hypercyclic binary relation; $\{\mathcal \{F\}\}$-topologically transitive binary relation; disjoint $\{\mathcal \{F\}\}$-hypercyclic binary relation; disjoint $\{\mathcal \{F\}\}$-topologically transitive binary relation; digraph},
language = {eng},
number = {4},
pages = {337-359},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$\mathcal \{F\}$-hypercyclic and disjoint $\mathcal \{F\}$-hypercyclic properties of binary relations over topological spaces},
url = {http://eudml.org/doc/297332},
volume = {145},
year = {2020},
}

TY - JOUR
AU - Kostić, Marko
TI - $\mathcal {F}$-hypercyclic and disjoint $\mathcal {F}$-hypercyclic properties of binary relations over topological spaces
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 4
SP - 337
EP - 359
AB - We examine various types of $\mathcal {F}$-hypercyclic ($\mathcal {F}$-topologically transitive) and disjoint $\mathcal {F}$-hypercyclic (disjoint $\mathcal {F}$-topologically transitive) properties of binary relations over topological spaces. We pay special attention to finite structures like simple graphs, digraphs and tournaments, providing a great number of illustrative examples.
LA - eng
KW - ${\mathcal {F}}$-hypercyclic binary relation; ${\mathcal {F}}$-topologically transitive binary relation; disjoint ${\mathcal {F}}$-hypercyclic binary relation; disjoint ${\mathcal {F}}$-topologically transitive binary relation; digraph
UR - http://eudml.org/doc/297332
ER -

References

top
  1. Bayart, F., Grivaux, S., 10.1090/S0002-9947-06-04019-0, Trans. Am. Math. Soc. 358 (2006), 5083-5117. (2006) Zbl1115.47005MR2231886DOI10.1090/S0002-9947-06-04019-0
  2. Bayart, F., Matheron, É., 10.1017/CBO9780511581113, Cambridge Tracts in Mathematics 179. Cambridge University Press, Cambridge (2009). (2009) Zbl1187.47001MR2533318DOI10.1017/CBO9780511581113
  3. Bès, J., Menet, Q., Peris, A., Puig, Y., Strong transitivity properties for operators, Available at http://arxiv.org/pdf/arxiv:1703.03724. MR3906215
  4. Bondy, J. A., Murty, U. S. R., 10.1007/978-1-349-03521-2, American Elsevier Publishing, New York (1976). (1976) Zbl1226.05083MR0411988DOI10.1007/978-1-349-03521-2
  5. Bonilla, A., Grosse-Erdmann, K.-G., 10.1017/S014338570600085X, Ergodic Theory Dyn. Syst. 27 (2007), 383-404 erratum ibid. 29 2009 1993-1994. (2007) Zbl1119.47011MR2308137DOI10.1017/S014338570600085X
  6. Bonilla, A., Grosse-Erdmann, K.-G., 10.1007/s13163-018-0260-y, Rev. Mat. Complut. 31 (2018), 673-711. (2018) Zbl06946767MR3847081DOI10.1007/s13163-018-0260-y
  7. Chartrand, G., Lesniak, L., Graphs and Digraphs, The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Brooks & Software. VIII, Monterey (1986). (1986) Zbl0666.05001MR0834583
  8. Chen, C.-C., Conejero, J. A., Kostić, M., Murillo-Arcila, M., 10.1515/math-2017-0082, Open Math. 15 (2017), 948-958. (2017) Zbl06751707MR3674105DOI10.1515/math-2017-0082
  9. Chen, C.-C., Conejero, J. A., Kostić, M., Murillo-Arcila, M., 10.3390/sym10060211, Symmetry 10 (2018), 12 pages. (2018) DOI10.3390/sym10060211
  10. Cvetković, D., Doobs, M., Sachs, H., Spectra of Graphs: Theory and Applications, VEB Deutscher Verlag der Wissenschaften, Berlin (1980). (1980) Zbl0458.05042MR0572262
  11. Cvetković, D., Rowlinson, P., Simić, S., 10.1017/CBO9781139086547, Encyclopedia of Mathematics and Its Applications 66. Cambrige University Press, Cambridge (1997). (1997) Zbl0878.05057MR1440854DOI10.1017/CBO9781139086547
  12. Fürstenberg, H., Recurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures, Rice University, Department of Mathematics, 1978. Princeton University Press, Princeton (1981). (1981) Zbl0459.28023MR0603625
  13. Grosse-Erdmann, K.-G., Manguillot, A. Peris, 10.1007/978-1-4471-2170-1, Universitext. Springer, Berlin (2011). (2011) Zbl1246.47004MR2919812DOI10.1007/978-1-4471-2170-1
  14. Kostić, M., 10.13140/RG.2.2.26696.42245, . DOI10.13140/RG.2.2.26696.42245
  15. Kostić, M., -hypercyclic extensions and disjoint -hypercyclic extensions of binary relations over topological spaces, Funct. Anal. Approx. Comput. 10 (2018), 41-52. (2018) Zbl06902499MR3804275
  16. Mart'ı{n}ez-Avendaño, R. A., 10.1016/j.jmaa.2016.08.066, J. Math. Anal. Appl. 446 (2017), 823-842. (2017) Zbl1346.05032MR3554758DOI10.1016/j.jmaa.2016.08.066
  17. Menet, Q., 10.1090/tran/6808, Trans. Am. Math. Soc. 369 (2017), 4977-4994. (2017) Zbl06705106MR3632557DOI10.1090/tran/6808
  18. Moon, J. W., Topics on Tournaments, Holt, Rinehart and Winston, New York (1968). (1968) Zbl0191.22701MR0256919
  19. Moon, J. W., Pullman, N. J., 10.1016/S0021-9800(67)80009-7, J. Comb. Theory 3 (1967), 1-9. (1967) Zbl0166.00901MR0213264DOI10.1016/S0021-9800(67)80009-7
  20. Namayanja, P., 10.3934/dcdsb.2018283, Discrete Contin. Dyn. Syst., Ser. B 23 (2018), 3415-3426. (2018) Zbl06996836MR3848206DOI10.3934/dcdsb.2018283
  21. Petrović, V., Graph Theory, University of Novi Sad, Novi Sad (1998), Serbian. (1998) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.