-hypercyclic and disjoint -hypercyclic properties of binary relations over topological spaces
Mathematica Bohemica (2020)
- Volume: 145, Issue: 4, page 337-359
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKostić, Marko. "$\mathcal {F}$-hypercyclic and disjoint $\mathcal {F}$-hypercyclic properties of binary relations over topological spaces." Mathematica Bohemica 145.4 (2020): 337-359. <http://eudml.org/doc/297332>.
@article{Kostić2020,
abstract = {We examine various types of $\mathcal \{F\}$-hypercyclic ($\mathcal \{F\}$-topologically transitive) and disjoint $\mathcal \{F\}$-hypercyclic (disjoint $\mathcal \{F\}$-topologically transitive) properties of binary relations over topological spaces. We pay special attention to finite structures like simple graphs, digraphs and tournaments, providing a great number of illustrative examples.},
author = {Kostić, Marko},
journal = {Mathematica Bohemica},
keywords = {$\{\mathcal \{F\}\}$-hypercyclic binary relation; $\{\mathcal \{F\}\}$-topologically transitive binary relation; disjoint $\{\mathcal \{F\}\}$-hypercyclic binary relation; disjoint $\{\mathcal \{F\}\}$-topologically transitive binary relation; digraph},
language = {eng},
number = {4},
pages = {337-359},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$\mathcal \{F\}$-hypercyclic and disjoint $\mathcal \{F\}$-hypercyclic properties of binary relations over topological spaces},
url = {http://eudml.org/doc/297332},
volume = {145},
year = {2020},
}
TY - JOUR
AU - Kostić, Marko
TI - $\mathcal {F}$-hypercyclic and disjoint $\mathcal {F}$-hypercyclic properties of binary relations over topological spaces
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 4
SP - 337
EP - 359
AB - We examine various types of $\mathcal {F}$-hypercyclic ($\mathcal {F}$-topologically transitive) and disjoint $\mathcal {F}$-hypercyclic (disjoint $\mathcal {F}$-topologically transitive) properties of binary relations over topological spaces. We pay special attention to finite structures like simple graphs, digraphs and tournaments, providing a great number of illustrative examples.
LA - eng
KW - ${\mathcal {F}}$-hypercyclic binary relation; ${\mathcal {F}}$-topologically transitive binary relation; disjoint ${\mathcal {F}}$-hypercyclic binary relation; disjoint ${\mathcal {F}}$-topologically transitive binary relation; digraph
UR - http://eudml.org/doc/297332
ER -
References
top- Bayart, F., Grivaux, S., 10.1090/S0002-9947-06-04019-0, Trans. Am. Math. Soc. 358 (2006), 5083-5117. (2006) Zbl1115.47005MR2231886DOI10.1090/S0002-9947-06-04019-0
- Bayart, F., Matheron, É., 10.1017/CBO9780511581113, Cambridge Tracts in Mathematics 179. Cambridge University Press, Cambridge (2009). (2009) Zbl1187.47001MR2533318DOI10.1017/CBO9780511581113
- Bès, J., Menet, Q., Peris, A., Puig, Y., Strong transitivity properties for operators, Available at http://arxiv.org/pdf/arxiv:1703.03724. MR3906215
- Bondy, J. A., Murty, U. S. R., 10.1007/978-1-349-03521-2, American Elsevier Publishing, New York (1976). (1976) Zbl1226.05083MR0411988DOI10.1007/978-1-349-03521-2
- Bonilla, A., Grosse-Erdmann, K.-G., 10.1017/S014338570600085X, Ergodic Theory Dyn. Syst. 27 (2007), 383-404 erratum ibid. 29 2009 1993-1994. (2007) Zbl1119.47011MR2308137DOI10.1017/S014338570600085X
- Bonilla, A., Grosse-Erdmann, K.-G., 10.1007/s13163-018-0260-y, Rev. Mat. Complut. 31 (2018), 673-711. (2018) Zbl06946767MR3847081DOI10.1007/s13163-018-0260-y
- Chartrand, G., Lesniak, L., Graphs and Digraphs, The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Brooks & Software. VIII, Monterey (1986). (1986) Zbl0666.05001MR0834583
- Chen, C.-C., Conejero, J. A., Kostić, M., Murillo-Arcila, M., 10.1515/math-2017-0082, Open Math. 15 (2017), 948-958. (2017) Zbl06751707MR3674105DOI10.1515/math-2017-0082
- Chen, C.-C., Conejero, J. A., Kostić, M., Murillo-Arcila, M., 10.3390/sym10060211, Symmetry 10 (2018), 12 pages. (2018) DOI10.3390/sym10060211
- Cvetković, D., Doobs, M., Sachs, H., Spectra of Graphs: Theory and Applications, VEB Deutscher Verlag der Wissenschaften, Berlin (1980). (1980) Zbl0458.05042MR0572262
- Cvetković, D., Rowlinson, P., Simić, S., 10.1017/CBO9781139086547, Encyclopedia of Mathematics and Its Applications 66. Cambrige University Press, Cambridge (1997). (1997) Zbl0878.05057MR1440854DOI10.1017/CBO9781139086547
- Fürstenberg, H., Recurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures, Rice University, Department of Mathematics, 1978. Princeton University Press, Princeton (1981). (1981) Zbl0459.28023MR0603625
- Grosse-Erdmann, K.-G., Manguillot, A. Peris, 10.1007/978-1-4471-2170-1, Universitext. Springer, Berlin (2011). (2011) Zbl1246.47004MR2919812DOI10.1007/978-1-4471-2170-1
- Kostić, M., 10.13140/RG.2.2.26696.42245, . DOI10.13140/RG.2.2.26696.42245
- Kostić, M., -hypercyclic extensions and disjoint -hypercyclic extensions of binary relations over topological spaces, Funct. Anal. Approx. Comput. 10 (2018), 41-52. (2018) Zbl06902499MR3804275
- Mart'ı{n}ez-Avendaño, R. A., 10.1016/j.jmaa.2016.08.066, J. Math. Anal. Appl. 446 (2017), 823-842. (2017) Zbl1346.05032MR3554758DOI10.1016/j.jmaa.2016.08.066
- Menet, Q., 10.1090/tran/6808, Trans. Am. Math. Soc. 369 (2017), 4977-4994. (2017) Zbl06705106MR3632557DOI10.1090/tran/6808
- Moon, J. W., Topics on Tournaments, Holt, Rinehart and Winston, New York (1968). (1968) Zbl0191.22701MR0256919
- Moon, J. W., Pullman, N. J., 10.1016/S0021-9800(67)80009-7, J. Comb. Theory 3 (1967), 1-9. (1967) Zbl0166.00901MR0213264DOI10.1016/S0021-9800(67)80009-7
- Namayanja, P., 10.3934/dcdsb.2018283, Discrete Contin. Dyn. Syst., Ser. B 23 (2018), 3415-3426. (2018) Zbl06996836MR3848206DOI10.3934/dcdsb.2018283
- Petrović, V., Graph Theory, University of Novi Sad, Novi Sad (1998), Serbian. (1998)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.