Attractors for stochastic reaction-diffusion equation with additive homogeneous noise

Jakub Slavík

Czechoslovak Mathematical Journal (2021)

  • Issue: 1, page 21-43
  • ISSN: 0011-4642

Abstract

top
We study the asymptotic behaviour of solutions of a reaction-diffusion equation in the whole space d driven by a spatially homogeneous Wiener process with finite spectral measure. The existence of a random attractor is established for initial data in suitable weighted L 2 -space in any dimension, which complements the result from P. W. Bates, K. Lu, and B. Wang (2013). Asymptotic compactness is obtained using elements of the method of short trajectories.

How to cite

top

Slavík, Jakub. "Attractors for stochastic reaction-diffusion equation with additive homogeneous noise." Czechoslovak Mathematical Journal (2021): 21-43. <http://eudml.org/doc/297347>.

@article{Slavík2021,
abstract = {We study the asymptotic behaviour of solutions of a reaction-diffusion equation in the whole space $\mathbb \{R\}^d$ driven by a spatially homogeneous Wiener process with finite spectral measure. The existence of a random attractor is established for initial data in suitable weighted $L^2$-space in any dimension, which complements the result from P. W. Bates, K. Lu, and B. Wang (2013). Asymptotic compactness is obtained using elements of the method of short trajectories.},
author = {Slavík, Jakub},
journal = {Czechoslovak Mathematical Journal},
keywords = {reaction-diffusion equation; random attractor; spatially homogeneous noise},
language = {eng},
number = {1},
pages = {21-43},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Attractors for stochastic reaction-diffusion equation with additive homogeneous noise},
url = {http://eudml.org/doc/297347},
year = {2021},
}

TY - JOUR
AU - Slavík, Jakub
TI - Attractors for stochastic reaction-diffusion equation with additive homogeneous noise
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 21
EP - 43
AB - We study the asymptotic behaviour of solutions of a reaction-diffusion equation in the whole space $\mathbb {R}^d$ driven by a spatially homogeneous Wiener process with finite spectral measure. The existence of a random attractor is established for initial data in suitable weighted $L^2$-space in any dimension, which complements the result from P. W. Bates, K. Lu, and B. Wang (2013). Asymptotic compactness is obtained using elements of the method of short trajectories.
LA - eng
KW - reaction-diffusion equation; random attractor; spatially homogeneous noise
UR - http://eudml.org/doc/297347
ER -

References

top
  1. Arnold, L., 10.1007/978-3-662-12878-7, Springer Monographs in Mathematics, Springer, Berlin (1998). (1998) Zbl0906.34001MR1723992DOI10.1007/978-3-662-12878-7
  2. Arrieta, J. M., Rodriguez-Bernal, A., Cholewa, J. W., Dlotko, T., 10.1142/S0218202504003234, Math. Models Methods Appl. Sci. 14 (2004), 253-293. (2004) Zbl1058.35076MR2040897DOI10.1142/S0218202504003234
  3. Bates, P. W., Lisei, H., Lu, K., 10.1142/S0219493706001621, Stoch. Dyn. 6 (2006), 1-21. (2006) Zbl1105.60041MR2210679DOI10.1142/S0219493706001621
  4. Bates, P. W., Lu, K., Wang, B., 10.1063/1.4817597, J. Math. Phys. 54 (2013), Article ID 081505, 26 pages. (2013) Zbl1288.35097MR3135449DOI10.1063/1.4817597
  5. Brzeźniak, Z., 10.1080/17442509608834032, Stochastics Stochastics Rep. 56 (1996), 1-15. (1996) Zbl0890.60077MR1396751DOI10.1080/17442509608834032
  6. Brzeźniak, Z., 10.1080/17442509708834122, Stochastics Stochastics Rep. 61 (1997), 245-295. (1997) Zbl0891.60056MR1488138DOI10.1080/17442509708834122
  7. Brzeźniak, Z., Li, Y., 10.1090/S0002-9947-06-03923-7, Trans. Am. Math. Soc. 358 (2006), 5587-5629. (2006) Zbl1113.60062MR2238928DOI10.1090/S0002-9947-06-03923-7
  8. Brzeźniak, Z., Peszat, S., 10.4064/sm-137-3-261-299, Stud. Math. 137 (1999), 261-299. (1999) Zbl0944.60075MR1736012DOI10.4064/sm-137-3-261-299
  9. Brzeźniak, Z., Neerven, J. van, 10.1215/kjm/1250283728, J. Math. Kyoto Univ. 43 (2003), 261-303. (2003) Zbl1056.60057MR2051026DOI10.1215/kjm/1250283728
  10. Caraballo, T., Langa, J. A., Melnik, V. S., Valero, J., 10.1023/A:1022902802385, Set-Valued Anal. 11 (2003), 153-201. (2003) Zbl1018.37048MR1966698DOI10.1023/A:1022902802385
  11. Cholewa, J. W., Dlotko, T., 10.1007/s10587-004-6447-z, Czech. Math. J. 54 (2004), 991-1013. (2004) Zbl1080.35033MR2099352DOI10.1007/s10587-004-6447-z
  12. Crauel, H., Debussche, A., Flandoli, F., 10.1007/BF02219225, J. Dyn. Differ. Equations 9 (1997), 307-341. (1997) Zbl0884.58064MR1451294DOI10.1007/BF02219225
  13. Crauel, H., Flandoli, F., 10.1007/BF01193705, Probab. Theory Relat. Fields 100 (1994), 365-393. (1994) Zbl0819.58023MR1305587DOI10.1007/BF01193705
  14. Prato, G. Da, Zabczyk, J., 10.1017/CBO9781107295513, Encyclopedia of Mathematics and Its Applications 152, Cambridge University Press, Cambridge (2014). (2014) Zbl1317.60077MR3236753DOI10.1017/CBO9781107295513
  15. Dawson, D. A., Salehi, H., 10.1016/0047-259X(80)90012-3, J. Multivariate Anal. 10 (1980), 141-180. (1980) Zbl0439.60051MR575923DOI10.1016/0047-259X(80)90012-3
  16. Feireisl, E., Bounded, locally compact global attractors for semilinear damped wave equations on 𝐑 N , Differ. Integral Equ. 9 (1996), 1147-1156. (1996) Zbl0858.35084MR1392099
  17. Flandoli, F., Schmalfuss, B., 10.1080/17442509608834083, Stochastics Stochastics Rep. 59 (1996), 21-45. (1996) Zbl0870.60057MR1427258DOI10.1080/17442509608834083
  18. Gel'fand, I. M., Vilenkin, N. Y., Generalized Functions. Vol. 4. Applications of Harmonic Analysis, Academic Press, New York (1964). (1964) Zbl0136.11201MR0435834
  19. Grasselli, M., Pražák, D., Schimperna, G., 10.1016/j.jde.2010.06.001, J. Differ. Equations 249 (2010), 2287-2315. (2010) Zbl1207.35068MR2718659DOI10.1016/j.jde.2010.06.001
  20. Haroske, D., Triebel, H., 10.1002/mana.19941670107, Math. Nachr. 167 (1994), 131-156. (1994) Zbl0829.46019MR1285311DOI10.1002/mana.19941670107
  21. Málek, J., Pražák, D., 10.1006/jdeq.2001.4087, J. Differ. Equations 181 (2002), 243-279. (2002) Zbl1187.37113MR1907143DOI10.1006/jdeq.2001.4087
  22. Ondreját, M., 10.1007/s00028-003-0130-y, J. Evol. Equ. 4 (2004), 169-191. (2004) Zbl1054.60068MR2059301DOI10.1007/s00028-003-0130-y
  23. Peszat, S., Zabczyk, J., 10.1016/S0304-4149(97)00089-6, Stochastic Processes Appl. 72 (1997), 187-204. (1997) Zbl0943.60048MR1486552DOI10.1016/S0304-4149(97)00089-6
  24. Peszat, S., Zabczyk, J., 10.1007/s004400050257, Probab. Theory Relat. Fields 116 (2000), 421-443. (2000) Zbl0959.60044MR1749283DOI10.1007/s004400050257
  25. Tessitore, G., Zabczyk, J., Invariant measures for stochastic heat equations, Probab. Math. Stat. 18 (1998), 271-287. (1998) Zbl0986.60057MR1671596
  26. Neerven, J. M. A. M. van, Veraar, M. C., Weis, L., 10.1016/j.jfa.2008.03.015, J. Funct. Anal. 255 (2008), 940-993. (2008) Zbl1149.60039MR2433958DOI10.1016/j.jfa.2008.03.015
  27. Wang, B., 10.1016/j.jde.2012.05.015, J. Differ. Equations 253 (2012), 1544-1583. (2012) Zbl1252.35081MR2927390DOI10.1016/j.jde.2012.05.015
  28. Zelik, S. V., 10.1002/1522-2616(200112)232:1<129::AID-MANA129>3.3.CO;2-K, Math. Nachr. 232 (2001), 129-179. (2001) Zbl0989.35032MR1871475DOI10.1002/1522-2616(200112)232:1<129::AID-MANA129>3.3.CO;2-K

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.