Attractors for stochastic reaction-diffusion equation with additive homogeneous noise
Czechoslovak Mathematical Journal (2021)
- Issue: 1, page 21-43
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSlavík, Jakub. "Attractors for stochastic reaction-diffusion equation with additive homogeneous noise." Czechoslovak Mathematical Journal (2021): 21-43. <http://eudml.org/doc/297347>.
@article{Slavík2021,
abstract = {We study the asymptotic behaviour of solutions of a reaction-diffusion equation in the whole space $\mathbb \{R\}^d$ driven by a spatially homogeneous Wiener process with finite spectral measure. The existence of a random attractor is established for initial data in suitable weighted $L^2$-space in any dimension, which complements the result from P. W. Bates, K. Lu, and B. Wang (2013). Asymptotic compactness is obtained using elements of the method of short trajectories.},
author = {Slavík, Jakub},
journal = {Czechoslovak Mathematical Journal},
keywords = {reaction-diffusion equation; random attractor; spatially homogeneous noise},
language = {eng},
number = {1},
pages = {21-43},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Attractors for stochastic reaction-diffusion equation with additive homogeneous noise},
url = {http://eudml.org/doc/297347},
year = {2021},
}
TY - JOUR
AU - Slavík, Jakub
TI - Attractors for stochastic reaction-diffusion equation with additive homogeneous noise
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 21
EP - 43
AB - We study the asymptotic behaviour of solutions of a reaction-diffusion equation in the whole space $\mathbb {R}^d$ driven by a spatially homogeneous Wiener process with finite spectral measure. The existence of a random attractor is established for initial data in suitable weighted $L^2$-space in any dimension, which complements the result from P. W. Bates, K. Lu, and B. Wang (2013). Asymptotic compactness is obtained using elements of the method of short trajectories.
LA - eng
KW - reaction-diffusion equation; random attractor; spatially homogeneous noise
UR - http://eudml.org/doc/297347
ER -
References
top- Arnold, L., 10.1007/978-3-662-12878-7, Springer Monographs in Mathematics, Springer, Berlin (1998). (1998) Zbl0906.34001MR1723992DOI10.1007/978-3-662-12878-7
- Arrieta, J. M., Rodriguez-Bernal, A., Cholewa, J. W., Dlotko, T., 10.1142/S0218202504003234, Math. Models Methods Appl. Sci. 14 (2004), 253-293. (2004) Zbl1058.35076MR2040897DOI10.1142/S0218202504003234
- Bates, P. W., Lisei, H., Lu, K., 10.1142/S0219493706001621, Stoch. Dyn. 6 (2006), 1-21. (2006) Zbl1105.60041MR2210679DOI10.1142/S0219493706001621
- Bates, P. W., Lu, K., Wang, B., 10.1063/1.4817597, J. Math. Phys. 54 (2013), Article ID 081505, 26 pages. (2013) Zbl1288.35097MR3135449DOI10.1063/1.4817597
- Brzeźniak, Z., 10.1080/17442509608834032, Stochastics Stochastics Rep. 56 (1996), 1-15. (1996) Zbl0890.60077MR1396751DOI10.1080/17442509608834032
- Brzeźniak, Z., 10.1080/17442509708834122, Stochastics Stochastics Rep. 61 (1997), 245-295. (1997) Zbl0891.60056MR1488138DOI10.1080/17442509708834122
- Brzeźniak, Z., Li, Y., 10.1090/S0002-9947-06-03923-7, Trans. Am. Math. Soc. 358 (2006), 5587-5629. (2006) Zbl1113.60062MR2238928DOI10.1090/S0002-9947-06-03923-7
- Brzeźniak, Z., Peszat, S., 10.4064/sm-137-3-261-299, Stud. Math. 137 (1999), 261-299. (1999) Zbl0944.60075MR1736012DOI10.4064/sm-137-3-261-299
- Brzeźniak, Z., Neerven, J. van, 10.1215/kjm/1250283728, J. Math. Kyoto Univ. 43 (2003), 261-303. (2003) Zbl1056.60057MR2051026DOI10.1215/kjm/1250283728
- Caraballo, T., Langa, J. A., Melnik, V. S., Valero, J., 10.1023/A:1022902802385, Set-Valued Anal. 11 (2003), 153-201. (2003) Zbl1018.37048MR1966698DOI10.1023/A:1022902802385
- Cholewa, J. W., Dlotko, T., 10.1007/s10587-004-6447-z, Czech. Math. J. 54 (2004), 991-1013. (2004) Zbl1080.35033MR2099352DOI10.1007/s10587-004-6447-z
- Crauel, H., Debussche, A., Flandoli, F., 10.1007/BF02219225, J. Dyn. Differ. Equations 9 (1997), 307-341. (1997) Zbl0884.58064MR1451294DOI10.1007/BF02219225
- Crauel, H., Flandoli, F., 10.1007/BF01193705, Probab. Theory Relat. Fields 100 (1994), 365-393. (1994) Zbl0819.58023MR1305587DOI10.1007/BF01193705
- Prato, G. Da, Zabczyk, J., 10.1017/CBO9781107295513, Encyclopedia of Mathematics and Its Applications 152, Cambridge University Press, Cambridge (2014). (2014) Zbl1317.60077MR3236753DOI10.1017/CBO9781107295513
- Dawson, D. A., Salehi, H., 10.1016/0047-259X(80)90012-3, J. Multivariate Anal. 10 (1980), 141-180. (1980) Zbl0439.60051MR575923DOI10.1016/0047-259X(80)90012-3
- Feireisl, E., Bounded, locally compact global attractors for semilinear damped wave equations on , Differ. Integral Equ. 9 (1996), 1147-1156. (1996) Zbl0858.35084MR1392099
- Flandoli, F., Schmalfuss, B., 10.1080/17442509608834083, Stochastics Stochastics Rep. 59 (1996), 21-45. (1996) Zbl0870.60057MR1427258DOI10.1080/17442509608834083
- Gel'fand, I. M., Vilenkin, N. Y., Generalized Functions. Vol. 4. Applications of Harmonic Analysis, Academic Press, New York (1964). (1964) Zbl0136.11201MR0435834
- Grasselli, M., Pražák, D., Schimperna, G., 10.1016/j.jde.2010.06.001, J. Differ. Equations 249 (2010), 2287-2315. (2010) Zbl1207.35068MR2718659DOI10.1016/j.jde.2010.06.001
- Haroske, D., Triebel, H., 10.1002/mana.19941670107, Math. Nachr. 167 (1994), 131-156. (1994) Zbl0829.46019MR1285311DOI10.1002/mana.19941670107
- Málek, J., Pražák, D., 10.1006/jdeq.2001.4087, J. Differ. Equations 181 (2002), 243-279. (2002) Zbl1187.37113MR1907143DOI10.1006/jdeq.2001.4087
- Ondreját, M., 10.1007/s00028-003-0130-y, J. Evol. Equ. 4 (2004), 169-191. (2004) Zbl1054.60068MR2059301DOI10.1007/s00028-003-0130-y
- Peszat, S., Zabczyk, J., 10.1016/S0304-4149(97)00089-6, Stochastic Processes Appl. 72 (1997), 187-204. (1997) Zbl0943.60048MR1486552DOI10.1016/S0304-4149(97)00089-6
- Peszat, S., Zabczyk, J., 10.1007/s004400050257, Probab. Theory Relat. Fields 116 (2000), 421-443. (2000) Zbl0959.60044MR1749283DOI10.1007/s004400050257
- Tessitore, G., Zabczyk, J., Invariant measures for stochastic heat equations, Probab. Math. Stat. 18 (1998), 271-287. (1998) Zbl0986.60057MR1671596
- Neerven, J. M. A. M. van, Veraar, M. C., Weis, L., 10.1016/j.jfa.2008.03.015, J. Funct. Anal. 255 (2008), 940-993. (2008) Zbl1149.60039MR2433958DOI10.1016/j.jfa.2008.03.015
- Wang, B., 10.1016/j.jde.2012.05.015, J. Differ. Equations 253 (2012), 1544-1583. (2012) Zbl1252.35081MR2927390DOI10.1016/j.jde.2012.05.015
- Zelik, S. V., 10.1002/1522-2616(200112)232:1<129::AID-MANA129>3.3.CO;2-K, Math. Nachr. 232 (2001), 129-179. (2001) Zbl0989.35032MR1871475DOI10.1002/1522-2616(200112)232:1<129::AID-MANA129>3.3.CO;2-K
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.