Decomposition of finitely generated modules using Fitting ideals

Somayeh Hadjirezaei; Sina Hedayat

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 4, page 1179-1190
  • ISSN: 0011-4642

Abstract

top
Let R be a commutative Noetherian ring and M be a finitely generated R -module. The main result of this paper is to characterize modules whose first nonzero Fitting ideal is a product of maximal ideals of R , in some cases.

How to cite

top

Hadjirezaei, Somayeh, and Hedayat, Sina. "Decomposition of finitely generated modules using Fitting ideals." Czechoslovak Mathematical Journal 70.4 (2020): 1179-1190. <http://eudml.org/doc/297348>.

@article{Hadjirezaei2020,
abstract = {Let $R$ be a commutative Noetherian ring and $M$ be a finitely generated $R$-module. The main result of this paper is to characterize modules whose first nonzero Fitting ideal is a product of maximal ideals of $R$, in some cases.},
author = {Hadjirezaei, Somayeh, Hedayat, Sina},
journal = {Czechoslovak Mathematical Journal},
keywords = {Fitting ideal; torsion submodule; regular element},
language = {eng},
number = {4},
pages = {1179-1190},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Decomposition of finitely generated modules using Fitting ideals},
url = {http://eudml.org/doc/297348},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Hadjirezaei, Somayeh
AU - Hedayat, Sina
TI - Decomposition of finitely generated modules using Fitting ideals
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 1179
EP - 1190
AB - Let $R$ be a commutative Noetherian ring and $M$ be a finitely generated $R$-module. The main result of this paper is to characterize modules whose first nonzero Fitting ideal is a product of maximal ideals of $R$, in some cases.
LA - eng
KW - Fitting ideal; torsion submodule; regular element
UR - http://eudml.org/doc/297348
ER -

References

top
  1. Buchsbaum, D. A., Eisenbud, D., 10.1016/0021-8693(73)90044-6, J. Algebra 25 (1973), 259-268. (1973) Zbl0264.13007MR0314819DOI10.1016/0021-8693(73)90044-6
  2. Eisenbud, D., 10.1007/978-1-4612-5350-1, Graduate Texts in Mathematics 150, Springer, New York (1995). (1995) Zbl0819.13001MR1322960DOI10.1007/978-1-4612-5350-1
  3. Einsiedler, M., Ward, T., 10.1007/s000100050135, Aequationes Math. 60 (2000), 57-71. (2000) Zbl0972.22005MR1777892DOI10.1007/s000100050135
  4. Fitting, H., Die Determinantenideale eines Moduls, Jahresber. Dtsch. Math.-Ver. 46 (1936), 195-228 German. (1936) Zbl0016.05003
  5. Hadjirezaei, S., Hedayat, S., 10.1080/00927872.2011.630851, Commun. Algebra 41 (2013), 361-366. (2013) Zbl1261.13004MR3010542DOI10.1080/00927872.2011.630851
  6. Hadjirezaei, S., Hedayat, S., 10.1080/00927872.2017.1324875, Commun. Algebra 46 (2018), 610-614. (2018) Zbl06875435MR3764882DOI10.1080/00927872.2017.1324875
  7. Hadjirezaei, S., Karimzadeh, S., 10.1080/00927872.2018.1469027, Commun. Algebra 46 (2018), 5427-5432. (2018) Zbl1409.13019MR3923770DOI10.1080/00927872.2018.1469027
  8. Huneke, C., Jorgensen, D. A., Katz, D., 10.1017/S030500410400814X, Math. Proc. Camb. Philos. Soc. 138 (2005), 41-54. (2005) Zbl1099.13028MR2127226DOI10.1017/S030500410400814X
  9. Lipman, J., 10.1090/S0002-9939-1969-0237511-0, Proc. Am. Math. Soc. 21 (1969), 422-426. (1969) Zbl0174.52703MR0237511DOI10.1090/S0002-9939-1969-0237511-0
  10. Lu, C.-P., Prime submodules of modules, Comment. Math. Univ. St. Pauli 33 (1984), 61-69. (1984) Zbl0575.13005MR0741378
  11. Northcott, D. G., 10.1017/CBO9780511565892, Cambridge Tracts in Mathematics 71, Cambridge University Press, Cambridge (1976). (1976) Zbl0328.13010MR0460383DOI10.1017/CBO9780511565892

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.