Normality, nuclear squares and Osborn identities

Aleš Drápal; Michael Kinyon

Commentationes Mathematicae Universitatis Carolinae (2020)

  • Volume: 61, Issue: 4, page 481-500
  • ISSN: 0010-2628

Abstract

top
Let Q be a loop. If S Q is such that ϕ ( S ) S for each standard generator of  Inn Q , then S does not have to be a normal subloop. In an LC loop the left and middle nucleus coincide and form a normal subloop. The identities of Osborn loops are obtained by applying the idea of nuclear identification, and various connections of Osborn loops to Moufang and CC loops are discussed. Every Osborn loop possesses a normal nucleus, and this nucleus coincides with the left, the right and the middle nucleus. Loops that are both Buchsteiner and Osborn are characterized as loops in which each square is in the nucleus.

How to cite

top

Drápal, Aleš, and Kinyon, Michael. "Normality, nuclear squares and Osborn identities." Commentationes Mathematicae Universitatis Carolinae 61.4 (2020): 481-500. <http://eudml.org/doc/297349>.

@article{Drápal2020,
abstract = {Let $Q$ be a loop. If $S\le Q$ is such that $\varphi (S) \subseteq S$ for each standard generator of  Inn$\,Q$, then $S$ does not have to be a normal subloop. In an LC loop the left and middle nucleus coincide and form a normal subloop. The identities of Osborn loops are obtained by applying the idea of nuclear identification, and various connections of Osborn loops to Moufang and CC loops are discussed. Every Osborn loop possesses a normal nucleus, and this nucleus coincides with the left, the right and the middle nucleus. Loops that are both Buchsteiner and Osborn are characterized as loops in which each square is in the nucleus.},
author = {Drápal, Aleš, Kinyon, Michael},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {loop; normal subloop; LC loop; Buchsteiner loop; Osborn loop; nuclear identification},
language = {eng},
number = {4},
pages = {481-500},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Normality, nuclear squares and Osborn identities},
url = {http://eudml.org/doc/297349},
volume = {61},
year = {2020},
}

TY - JOUR
AU - Drápal, Aleš
AU - Kinyon, Michael
TI - Normality, nuclear squares and Osborn identities
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 4
SP - 481
EP - 500
AB - Let $Q$ be a loop. If $S\le Q$ is such that $\varphi (S) \subseteq S$ for each standard generator of  Inn$\,Q$, then $S$ does not have to be a normal subloop. In an LC loop the left and middle nucleus coincide and form a normal subloop. The identities of Osborn loops are obtained by applying the idea of nuclear identification, and various connections of Osborn loops to Moufang and CC loops are discussed. Every Osborn loop possesses a normal nucleus, and this nucleus coincides with the left, the right and the middle nucleus. Loops that are both Buchsteiner and Osborn are characterized as loops in which each square is in the nucleus.
LA - eng
KW - loop; normal subloop; LC loop; Buchsteiner loop; Osborn loop; nuclear identification
UR - http://eudml.org/doc/297349
ER -

References

top
  1. Basarab A. S., A class of WIP loops, Mat. Issled. 2 (1967), vyp. 2, 3–24 (Russian). MR0227304
  2. Basarab A. S., A certain class of G -loops, Mat. Issled. 3 (1968), vyp. 2 (8), 72–77 (Russian). MR0255713
  3. Basarab A. S., Moufang's theorem, Bul. Akad. Štiince RSS Moldoven, 1968, (1968), no. 1, 16–24 (Russian). MR0237693
  4. Basarab A. S., Isotopy of WIP loops, Mat. Issled. 5 (1970), vyp. 2 (16), 3–12 (Russian). MR0284530
  5. Basarab A. S., The Osborn loop, Studies in the theory of quasigroups and loops, 193, Izdat. “Štiinca”, Kishinev, 1973, pages 12–18 (Russian). MR0369591
  6. Basarab A. S., A class of LK-loops, Mat. Issled. 120 Bin. i -arnye Kvazigruppy (1991), 3–7, 118 (Russian). MR1121425
  7. Basarab A. S., Osborn’s G -loops, Quasigroups Related Systems 1 (1994), no. 1, 51–56. MR1327945
  8. Basarab A. S., Generalized Moufang G -loops, Quasigroups Related Systems 3 (1996), 1–5. MR1745960
  9. Bates G. E., Kiokemeister F., 10.1090/S0002-9904-1948-09146-7, Bull. Amer. Math. Soc. 54 (1948), 1180–1185. Zbl0034.29801MR0027768DOI10.1090/S0002-9904-1948-09146-7
  10. Belousov V. D., Foundations of the Theory of Quasigroups and Loops, Nauka, Moscow, 1967 (Russian). MR0218483
  11. Bruck R. H., 10.1090/S0002-9947-1946-0017288-3, Trans. Amer. Math. Soc. 60 (1946), 245–354. Zbl0061.02201MR0017288DOI10.1090/S0002-9947-1946-0017288-3
  12. Bruck R. H., A Survey of Binary Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, 20, Reihe: Gruppentheorie, Springer, Berlin, 1958. Zbl0141.01401MR0093552
  13. Csörgö P., Drápal A., Kinyon M. K., Buchsteiner loops, Internat. J. Algebra Comput. 19 (2009), no. 8, 1049–1088. MR2603718
  14. Drápal A., 10.1016/j.jalgebra.2003.06.011, J. Algebra 272 (2004), no. 2, 838–850. MR2028083DOI10.1016/j.jalgebra.2003.06.011
  15. Drápal A., On multiplication groups of left conjugacy closed loops, Comment. Math. Univ. Carolin. 45 (2004), no. 2, 223–236. MR2075271
  16. Drápal A., 10.1007/s00012-019-0605-5, Algebra Universalis 80 (2019), no. 3, Paper No. 32, 9 pages. MR3988676DOI10.1007/s00012-019-0605-5
  17. Drápal A., Jedlička P., 10.1016/j.ejc.2010.01.007, European J. Combin. 31 (2010), no. 7, 1907–1923. MR2673029DOI10.1016/j.ejc.2010.01.007
  18. Fenyves F., Extra loops. I., Publ. Math. Debrecen 15 (1968), 235–238. MR0237695
  19. Fenyves F., Extra loops. II. On loops with identities of Bol–Moufang type, Publ. Math. Debrecen 16 (1969), 187–192. MR0262409
  20. Goodaire E. G., Robinson D. A., 10.4153/CMB-1990-013-9, Canad. Math. Bull. 33 (1990), no. 1, 73–78. MR1036860DOI10.4153/CMB-1990-013-9
  21. Hrůza B., Sur quelques propriétés des inverse-faibles, Knižnice Odborn. Věd. Spisů Vysoké Učení Tech. v Brně B-56 (1975), 101–107 (French). MR0387470
  22. Huthnance E. D., Jr., A Theory of Generalized Moufang Loops, Thesis (Ph.D.)–Georgia Institute of Technology, Georgia, 1969. MR2617787
  23. Jaiyéolá T. G., Adéníran J. O., A new characterization of Osborn–Buchsteiner loops, Quasigroups Related Systems 20 (2012), no. 2, 233–238. MR3232744
  24. Kinyon M., A survey of Osborn loops, plenary talk at the First Milehigh Conference on Loops, Quasigroups, & Nonassociative Systems, University of Denver, Denver, CO, 2005, https://www.cs.du.edu/̴ petr/milehigh/2005/kinyon_talk.pdf. 
  25. Kinyon M. K., Kunen K., Phillips J. D., 10.1081/AGB-120027928, Comm. Algebra 32 (2004), no. 2, 767–786. MR2101839DOI10.1081/AGB-120027928
  26. Kunen K., 10.1090/S0002-9947-00-02350-3, Trans. Amer. Math. Soc. 352 (2000), no. 6, 2889–2911. MR1615991DOI10.1090/S0002-9947-00-02350-3
  27. Nagy P. T., Strambach K., 10.4153/CJM-1994-059-8, Canad. J. Math. 46 (1994), no. 5, 1027–1056. MR1295130DOI10.4153/CJM-1994-059-8
  28. Osborn J. M., 10.2140/pjm.1960.10.295, Pacific J. Math. 10 (1960), 295–304. MR0111800DOI10.2140/pjm.1960.10.295
  29. Pflugfelder H. O., Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990. Zbl0715.20043MR1125767
  30. Phillips J. D., Vojtěchovský P., 10.1007/s00012-005-1941-1, Algebra Universalis 54 (2005), no. 3, 259–271. MR2219409DOI10.1007/s00012-005-1941-1
  31. Phillips J. D., Vojtěchovský P., C-loops: an introduction, Publ. Math. Debrecen 68 (2006), no. 1–2, 115–137. MR2213546

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.