Normality, nuclear squares and Osborn identities
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 4, page 481-500
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDrápal, Aleš, and Kinyon, Michael. "Normality, nuclear squares and Osborn identities." Commentationes Mathematicae Universitatis Carolinae 61.4 (2020): 481-500. <http://eudml.org/doc/297349>.
@article{Drápal2020,
abstract = {Let $Q$ be a loop. If $S\le Q$ is such that $\varphi (S) \subseteq S$ for each standard generator of Inn$\,Q$, then $S$ does not have to be a normal subloop. In an LC loop the left and middle nucleus coincide and form a normal subloop. The identities of Osborn loops are obtained by applying the idea of nuclear identification, and various connections of Osborn loops to Moufang and CC loops are discussed. Every Osborn loop possesses a normal nucleus, and this nucleus coincides with the left, the right and the middle nucleus. Loops that are both Buchsteiner and Osborn are characterized as loops in which each square is in the nucleus.},
author = {Drápal, Aleš, Kinyon, Michael},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {loop; normal subloop; LC loop; Buchsteiner loop; Osborn loop; nuclear identification},
language = {eng},
number = {4},
pages = {481-500},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Normality, nuclear squares and Osborn identities},
url = {http://eudml.org/doc/297349},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Drápal, Aleš
AU - Kinyon, Michael
TI - Normality, nuclear squares and Osborn identities
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 4
SP - 481
EP - 500
AB - Let $Q$ be a loop. If $S\le Q$ is such that $\varphi (S) \subseteq S$ for each standard generator of Inn$\,Q$, then $S$ does not have to be a normal subloop. In an LC loop the left and middle nucleus coincide and form a normal subloop. The identities of Osborn loops are obtained by applying the idea of nuclear identification, and various connections of Osborn loops to Moufang and CC loops are discussed. Every Osborn loop possesses a normal nucleus, and this nucleus coincides with the left, the right and the middle nucleus. Loops that are both Buchsteiner and Osborn are characterized as loops in which each square is in the nucleus.
LA - eng
KW - loop; normal subloop; LC loop; Buchsteiner loop; Osborn loop; nuclear identification
UR - http://eudml.org/doc/297349
ER -
References
top- Basarab A. S., A class of WIP loops, Mat. Issled. 2 (1967), vyp. 2, 3–24 (Russian). MR0227304
- Basarab A. S., A certain class of -loops, Mat. Issled. 3 (1968), vyp. 2 (8), 72–77 (Russian). MR0255713
- Basarab A. S., Moufang's theorem, Bul. Akad. Štiince RSS Moldoven, 1968, (1968), no. 1, 16–24 (Russian). MR0237693
- Basarab A. S., Isotopy of WIP loops, Mat. Issled. 5 (1970), vyp. 2 (16), 3–12 (Russian). MR0284530
- Basarab A. S., The Osborn loop, Studies in the theory of quasigroups and loops, 193, Izdat. “Štiinca”, Kishinev, 1973, pages 12–18 (Russian). MR0369591
- Basarab A. S., A class of LK-loops, Mat. Issled. 120 Bin. i -arnye Kvazigruppy (1991), 3–7, 118 (Russian). MR1121425
- Basarab A. S., Osborn’s -loops, Quasigroups Related Systems 1 (1994), no. 1, 51–56. MR1327945
- Basarab A. S., Generalized Moufang -loops, Quasigroups Related Systems 3 (1996), 1–5. MR1745960
- Bates G. E., Kiokemeister F., 10.1090/S0002-9904-1948-09146-7, Bull. Amer. Math. Soc. 54 (1948), 1180–1185. Zbl0034.29801MR0027768DOI10.1090/S0002-9904-1948-09146-7
- Belousov V. D., Foundations of the Theory of Quasigroups and Loops, Nauka, Moscow, 1967 (Russian). MR0218483
- Bruck R. H., 10.1090/S0002-9947-1946-0017288-3, Trans. Amer. Math. Soc. 60 (1946), 245–354. Zbl0061.02201MR0017288DOI10.1090/S0002-9947-1946-0017288-3
- Bruck R. H., A Survey of Binary Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, 20, Reihe: Gruppentheorie, Springer, Berlin, 1958. Zbl0141.01401MR0093552
- Csörgö P., Drápal A., Kinyon M. K., Buchsteiner loops, Internat. J. Algebra Comput. 19 (2009), no. 8, 1049–1088. MR2603718
- Drápal A., 10.1016/j.jalgebra.2003.06.011, J. Algebra 272 (2004), no. 2, 838–850. MR2028083DOI10.1016/j.jalgebra.2003.06.011
- Drápal A., On multiplication groups of left conjugacy closed loops, Comment. Math. Univ. Carolin. 45 (2004), no. 2, 223–236. MR2075271
- Drápal A., 10.1007/s00012-019-0605-5, Algebra Universalis 80 (2019), no. 3, Paper No. 32, 9 pages. MR3988676DOI10.1007/s00012-019-0605-5
- Drápal A., Jedlička P., 10.1016/j.ejc.2010.01.007, European J. Combin. 31 (2010), no. 7, 1907–1923. MR2673029DOI10.1016/j.ejc.2010.01.007
- Fenyves F., Extra loops. I., Publ. Math. Debrecen 15 (1968), 235–238. MR0237695
- Fenyves F., Extra loops. II. On loops with identities of Bol–Moufang type, Publ. Math. Debrecen 16 (1969), 187–192. MR0262409
- Goodaire E. G., Robinson D. A., 10.4153/CMB-1990-013-9, Canad. Math. Bull. 33 (1990), no. 1, 73–78. MR1036860DOI10.4153/CMB-1990-013-9
- Hrůza B., Sur quelques propriétés des inverse-faibles, Knižnice Odborn. Věd. Spisů Vysoké Učení Tech. v Brně B-56 (1975), 101–107 (French). MR0387470
- Huthnance E. D., Jr., A Theory of Generalized Moufang Loops, Thesis (Ph.D.)–Georgia Institute of Technology, Georgia, 1969. MR2617787
- Jaiyéolá T. G., Adéníran J. O., A new characterization of Osborn–Buchsteiner loops, Quasigroups Related Systems 20 (2012), no. 2, 233–238. MR3232744
- Kinyon M., A survey of Osborn loops, plenary talk at the First Milehigh Conference on Loops, Quasigroups, & Nonassociative Systems, University of Denver, Denver, CO, 2005, https://www.cs.du.edu/̴ petr/milehigh/2005/kinyon_talk.pdf.
- Kinyon M. K., Kunen K., Phillips J. D., 10.1081/AGB-120027928, Comm. Algebra 32 (2004), no. 2, 767–786. MR2101839DOI10.1081/AGB-120027928
- Kunen K., 10.1090/S0002-9947-00-02350-3, Trans. Amer. Math. Soc. 352 (2000), no. 6, 2889–2911. MR1615991DOI10.1090/S0002-9947-00-02350-3
- Nagy P. T., Strambach K., 10.4153/CJM-1994-059-8, Canad. J. Math. 46 (1994), no. 5, 1027–1056. MR1295130DOI10.4153/CJM-1994-059-8
- Osborn J. M., 10.2140/pjm.1960.10.295, Pacific J. Math. 10 (1960), 295–304. MR0111800DOI10.2140/pjm.1960.10.295
- Pflugfelder H. O., Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990. Zbl0715.20043MR1125767
- Phillips J. D., Vojtěchovský P., 10.1007/s00012-005-1941-1, Algebra Universalis 54 (2005), no. 3, 259–271. MR2219409DOI10.1007/s00012-005-1941-1
- Phillips J. D., Vojtěchovský P., C-loops: an introduction, Publ. Math. Debrecen 68 (2006), no. 1–2, 115–137. MR2213546
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.