Herbivore harvesting and alternative steady states in coral reefs

Ikbal Hossein Sarkar; Joydeb Bhattacharyya; Samares Pal

Applications of Mathematics (2021)

  • Volume: 66, Issue: 2, page 233-268
  • ISSN: 0862-7940

Abstract

top
Coral reefs can undergo relatively rapid changes in the dominant biota, a phenomenon referred to as phase shift. Degradation of coral reefs is often associated with changes in community structure towards a macroalgae-dominated reef ecosystem due to the reduction in herbivory caused by overfishing. We investigate the coral-macroalgal phase shift due to the effects of harvesting of herbivorous reef fish by means of a continuous time model in the food chain. Conditions for local asymptotic stability of steady states are derived. We have shown that under certain conditions the system is uniformly persistent in presence of all the organisms. Moreover, it is shown that the system undergoes a Hopf bifurcation when the carrying capacity of macroalgae crosses certain critical value. Computer simulations have been carried out to illustrate different analytical results.

How to cite

top

Sarkar, Ikbal Hossein, Bhattacharyya, Joydeb, and Pal, Samares. "Herbivore harvesting and alternative steady states in coral reefs." Applications of Mathematics 66.2 (2021): 233-268. <http://eudml.org/doc/297362>.

@article{Sarkar2021,
abstract = {Coral reefs can undergo relatively rapid changes in the dominant biota, a phenomenon referred to as phase shift. Degradation of coral reefs is often associated with changes in community structure towards a macroalgae-dominated reef ecosystem due to the reduction in herbivory caused by overfishing. We investigate the coral-macroalgal phase shift due to the effects of harvesting of herbivorous reef fish by means of a continuous time model in the food chain. Conditions for local asymptotic stability of steady states are derived. We have shown that under certain conditions the system is uniformly persistent in presence of all the organisms. Moreover, it is shown that the system undergoes a Hopf bifurcation when the carrying capacity of macroalgae crosses certain critical value. Computer simulations have been carried out to illustrate different analytical results.},
author = {Sarkar, Ikbal Hossein, Bhattacharyya, Joydeb, Pal, Samares},
journal = {Applications of Mathematics},
keywords = {phase shift; coral bleaching; harvesting; Hopf bifurcation},
language = {eng},
number = {2},
pages = {233-268},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Herbivore harvesting and alternative steady states in coral reefs},
url = {http://eudml.org/doc/297362},
volume = {66},
year = {2021},
}

TY - JOUR
AU - Sarkar, Ikbal Hossein
AU - Bhattacharyya, Joydeb
AU - Pal, Samares
TI - Herbivore harvesting and alternative steady states in coral reefs
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 233
EP - 268
AB - Coral reefs can undergo relatively rapid changes in the dominant biota, a phenomenon referred to as phase shift. Degradation of coral reefs is often associated with changes in community structure towards a macroalgae-dominated reef ecosystem due to the reduction in herbivory caused by overfishing. We investigate the coral-macroalgal phase shift due to the effects of harvesting of herbivorous reef fish by means of a continuous time model in the food chain. Conditions for local asymptotic stability of steady states are derived. We have shown that under certain conditions the system is uniformly persistent in presence of all the organisms. Moreover, it is shown that the system undergoes a Hopf bifurcation when the carrying capacity of macroalgae crosses certain critical value. Computer simulations have been carried out to illustrate different analytical results.
LA - eng
KW - phase shift; coral bleaching; harvesting; Hopf bifurcation
UR - http://eudml.org/doc/297362
ER -

References

top
  1. Bender, D., Diaz-Pulido, G., Dove, S., 10.1016/j.jembe.2012.06.014, J. Exp. Mar. Biol. Ecol. 429 (2012), 15-19. (2012) DOI10.1016/j.jembe.2012.06.014
  2. Bhattacharyya, J., Pal, S., 10.1016/j.nonrwa.2010.08.020, Nonlinear Anal., Real World Appl. 12 (2011), 965-978. (2011) Zbl1203.92059MR2736185DOI10.1016/j.nonrwa.2010.08.020
  3. Box, S. J., Mumby, P. J., 10.3354/meps342139, Mar. Ecol. Prog. Ser. 342 (2007), 139-149. (2007) DOI10.3354/meps342139
  4. Bruno, J. F., Precht, W. F., Vroom, P. S., Aronson, R. B., 10.1016/j.marpolbul.2014.01.010, Marine Pollution Bull. 80 (2014), 24-29. (2014) DOI10.1016/j.marpolbul.2014.01.010
  5. Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R., Schutte, V. G. W., 10.1890/08-1781.1, Ecology 90 (2009), 1478-1484. (2009) DOI10.1890/08-1781.1
  6. Cantrell, R. S., Cosner, C., 10.1006/jmaa.2000.7343, J. Math. Anal. Appl. 257 (2001), 206-222. (2001) Zbl0991.34046MR1824675DOI10.1006/jmaa.2000.7343
  7. Cheal, A. J., MacNeil, M. A., Cripps, E., Emslie, M. J., Jonker, M., Schaffelke, B., Sweatman, H., 10.1007/s00338-010-0661-y, Coral Reefs 29 (2010), 1005-1015. (2010) DOI10.1007/s00338-010-0661-y
  8. Cui, J., Takeuchi, Y., 10.1016/j.jmaa.2005.10.011, J. Math. Anal. Appl. 317 (2006), 464-474. (2006) Zbl1102.34033MR2209573DOI10.1016/j.jmaa.2005.10.011
  9. Evans, R. D., Wilson, S. K., Field, S. N., Moore, J. A. Y., 10.1007/s00227-013-2362-x, Mar. Biol. 161 (2014), 599-607. (2014) DOI10.1007/s00227-013-2362-x
  10. Feng, J., Wang, H., Huang, D., Li, S., 10.1016/j.ecolmodel.2005.11.033, Ecological Modelling 195 (2006), 377-384. (2006) DOI10.1016/j.ecolmodel.2005.11.033
  11. Gupta, R. P., Chandra, P., 10.1016/j.jmaa.2012.08.057, J. Math. Anal. Appl. 398 (2013), 278-295. (2013) Zbl1259.34035MR2984333DOI10.1016/j.jmaa.2012.08.057
  12. Harriott, V. J., Banks, S. A., 10.1007/s00338-001-0201-x, Coral Reefs 21 (2002), 83-94. (2002) DOI10.1007/s00338-001-0201-x
  13. Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J., Steneck, R. S., 10.1016/j.tree.2010.07.011, Trends Ecol. Evol. 25 (2010), 633-642. (2010) DOI10.1016/j.tree.2010.07.011
  14. Jessen, C., Roder, C., Lizcano, J. F. V., Voolstra, C. R., Wild, C., 10.1371/journal.pone.0066992, Plos One 8 (2013), Article ID e66992, 13 pages. (2013) DOI10.1371/journal.pone.0066992
  15. Kramer, D. B., 10.5751/ES-02314-130117, Ecol. Soc. 13 (2007), Article ID 17, 25 pages. (2007) DOI10.5751/ES-02314-130117
  16. Lenzini, P., Rebaza, J., Nonconstant predator harvesting on ratio-dependent predator-prey models, Appl. Math. Sci., Ruse 4 (2010), 791-803. (2010) Zbl1189.37098MR2595517
  17. Lirman, D., 10.1007/s003380000125, Coral Reefs 19 (2001), 392-399. (2001) DOI10.1007/s003380000125
  18. Littler, M. M., Littler, D. S., Brooks, B. L., 10.1016/j.hal.2005.11.003, Harmful Algae 5 (2006), 565-585. (2006) DOI10.1016/j.hal.2005.11.003
  19. McCook, L. J., Jompa, J., Diaz-Pulido, G., 10.1007/s003380000129, Coral Reefs 19 (2001), 400-417. (2001) DOI10.1007/s003380000129
  20. McManus, J. W., Polsenberg, J. F., 10.1016/j.pocean.2004.02.014, Progress in Oceanography 60 (2004), 263-279. (2004) DOI10.1016/j.pocean.2004.02.014
  21. Mumby, P. J., 10.1007/s00338-009-0506-8, Coral Reefs 28 (2009), 761-773. (2009) DOI10.1007/s00338-009-0506-8
  22. Mumby, P. J., Foster, N. L., Fahy, E. A. G., 10.1007/s00338-005-0058-5, Coral Reefs 24 (2005), 681-692. (2005) DOI10.1007/s00338-005-0058-5
  23. Mumby, P. J., Steneck, R. S., 10.1016/j.tree.2008.06.011, Trends Ecol. Evol. 23 (2008), 555-563. (2008) DOI10.1016/j.tree.2008.06.011
  24. Murray, G. P. D., Stillman, R. A., Gozlan, R. E., Britton, J. R., 10.1111/eth.12117, Ethology 119 (2013), 751-761. (2013) DOI10.1111/eth.12117
  25. Poore, A. B., 10.1007/BF00248886, Arch. Ration. Mech. Anal. 60 (1976), 371-393. (1976) Zbl0358.34005MR0404766DOI10.1007/BF00248886
  26. Ruan, S., 10.1007/BF00161202, J. Math. Biol. 31 (1993), 633-654. (1993) Zbl0779.92021MR1237092DOI10.1007/BF00161202
  27. Siekmann, I., Malchow, H., Venturino, E., 10.3934/mbe.2008.5.549, Math. Biosci. Eng. 5 (2008), 549-565. (2008) Zbl1158.92320MR2492346DOI10.3934/mbe.2008.5.549
  28. Smith, J. E., Hunter, C. L., Smith, C. M., 10.1007/s00442-009-1546-z, Oecologia 163 (2010), 497-507. (2010) DOI10.1007/s00442-009-1546-z
  29. J. E. Smith, M. Shaw, R. A. Edwards, D. Obura, O. Pantos, E. Sala, S. A. Sandin, S. Smriga, M. Hatay, F. L. Rohwer, 10.1111/j.1461-0248.2006.00937.x, Ecol. Lett. 9 (2006), 835-845. (2006) DOI10.1111/j.1461-0248.2006.00937.x

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.