Can a Lucas number be a sum of three repdigits?
Chèfiath A. Adegbindin; Alain Togbé
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 3, page 383-396
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topReferences
top- Adegbindin C., Luca F., Togbé A., Pell and Pell–Lucas numbers as sums of three repdigits, accepted in Acta Math. Univ. Comenian. (N.S.). MR4061423
- Bravo J. J., Luca F., 10.5486/PMD.2013.5390, Publ. Math. Debrecen 82 (2013), no. 3–4, 623–639. MR3066434DOI10.5486/PMD.2013.5390
- Bugeaud Y., Mignotte M., 10.1112/S0025579300007865, Mathematika 46 (1999), no. 2, 411–417. MR1832631DOI10.1112/S0025579300007865
- Bugeaud Y., Mignotte M., Siksek S., 10.4007/annals.2006.163.969, Ann. of Math. (2) 163 (2006), no. 3, 969–1018. MR2215137DOI10.4007/annals.2006.163.969
- Díaz-Alvarado S., Luca F., Fibonacci numbers which are sums of two repdigits, Proc. XIVth International Conf. on Fibonacci Numbers and Their Applications, Morelia, Mexico, 2010, Sociedad Matematica Mexicana, Aportaciones Matemáticas, Investigación, 20, 2011, pages 97–108. MR3243271
- Dossavi-Yovo A., Luca F., Togbé A., 10.5486/PMD.2016.7378, Publ. Math. Debrecen 88 (2016), no. 3–4, 381–399. MR3491748DOI10.5486/PMD.2016.7378
- Faye B., Luca F., Pell and Pell–Lucas numbers with only one distinct digit, Ann. Math. Inform. 45 (2015), 55–60. MR3438812
- Luca F., 10.2989/16073600009485986, Quaest. Math. 23 (2000), no. 4, 389–404. MR1810289DOI10.2989/16073600009485986
- Luca F., Fibonacci and Lucas numbers with only one distinct digit, Portugal. Math. 57 (2000), no. 2, 243–254. MR1759818
- Luca F., Repdigits as sums of three Fibonacci numbers, Math. Commun. 17 (2012), no. 1, 1–11. MR2946127
- Marques D., Togbé A., 10.4064/cm124-2-1, Colloq. Math. 124 (2011), no. 2, 145–155. MR2842943DOI10.4064/cm124-2-1
- Marques D., Togbé A., On repdigits as product of consecutive Fibonacci numbers, Rend. Istit. Mat. Univ. Trieste 44 (2012), 393–397. MR3019569
- Matveev E. M., An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125–180 (Russian); translation in Izv. Math. 64 (2000), no. 6, 1217–1269. MR1817252
- de Weger B. M. M., Algorithms for Diophantine Equations, CWI Tract, 65, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989. MR1026936