Can a Lucas number be a sum of three repdigits?

Chèfiath A. Adegbindin; Alain Togbé

Commentationes Mathematicae Universitatis Carolinae (2020)

  • Volume: 61, Issue: 3, page 383-396
  • ISSN: 0010-2628

Abstract

top
We give the answer to the question in the title by proving that L 18 = 5778 = 5555 + 222 + 1 is the largest Lucas number expressible as a sum of exactly three repdigits. Therefore, there are many Lucas numbers which are sums of three repdigits.

How to cite

top

Adegbindin, Chèfiath A., and Togbé, Alain. "Can a Lucas number be a sum of three repdigits?." Commentationes Mathematicae Universitatis Carolinae 61.3 (2020): 383-396. <http://eudml.org/doc/297364>.

@article{Adegbindin2020,
abstract = {We give the answer to the question in the title by proving that \begin\{equation*\} L\_\{18\} = 5778 = 5555 + 222 + 1 \end\{equation*\} is the largest Lucas number expressible as a sum of exactly three repdigits. Therefore, there are many Lucas numbers which are sums of three repdigits.},
author = {Adegbindin, Chèfiath A., Togbé, Alain},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Pell equation; repdigit; linear forms in complex logarithms},
language = {eng},
number = {3},
pages = {383-396},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Can a Lucas number be a sum of three repdigits?},
url = {http://eudml.org/doc/297364},
volume = {61},
year = {2020},
}

TY - JOUR
AU - Adegbindin, Chèfiath A.
AU - Togbé, Alain
TI - Can a Lucas number be a sum of three repdigits?
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 3
SP - 383
EP - 396
AB - We give the answer to the question in the title by proving that \begin{equation*} L_{18} = 5778 = 5555 + 222 + 1 \end{equation*} is the largest Lucas number expressible as a sum of exactly three repdigits. Therefore, there are many Lucas numbers which are sums of three repdigits.
LA - eng
KW - Pell equation; repdigit; linear forms in complex logarithms
UR - http://eudml.org/doc/297364
ER -

References

top
  1. Adegbindin C., Luca F., Togbé A., Pell and Pell–Lucas numbers as sums of three repdigits, accepted in Acta Math. Univ. Comenian. (N.S.). MR4061423
  2. Bravo J. J., Luca F., 10.5486/PMD.2013.5390, Publ. Math. Debrecen 82 (2013), no. 3–4, 623–639. MR3066434DOI10.5486/PMD.2013.5390
  3. Bugeaud Y., Mignotte M., 10.1112/S0025579300007865, Mathematika 46 (1999), no. 2, 411–417. MR1832631DOI10.1112/S0025579300007865
  4. Bugeaud Y., Mignotte M., Siksek S., 10.4007/annals.2006.163.969, Ann. of Math. (2) 163 (2006), no. 3, 969–1018. MR2215137DOI10.4007/annals.2006.163.969
  5. Díaz-Alvarado S., Luca F., Fibonacci numbers which are sums of two repdigits, Proc. XIVth International Conf. on Fibonacci Numbers and Their Applications, Morelia, Mexico, 2010, Sociedad Matematica Mexicana, Aportaciones Matemáticas, Investigación, 20, 2011, pages 97–108. MR3243271
  6. Dossavi-Yovo A., Luca F., Togbé A., 10.5486/PMD.2016.7378, Publ. Math. Debrecen 88 (2016), no. 3–4, 381–399. MR3491748DOI10.5486/PMD.2016.7378
  7. Faye B., Luca F., Pell and Pell–Lucas numbers with only one distinct digit, Ann. Math. Inform. 45 (2015), 55–60. MR3438812
  8. Luca F., 10.2989/16073600009485986, Quaest. Math. 23 (2000), no. 4, 389–404. MR1810289DOI10.2989/16073600009485986
  9. Luca F., Fibonacci and Lucas numbers with only one distinct digit, Portugal. Math. 57 (2000), no. 2, 243–254. MR1759818
  10. Luca F., Repdigits as sums of three Fibonacci numbers, Math. Commun. 17 (2012), no. 1, 1–11. MR2946127
  11. Marques D., Togbé A., 10.4064/cm124-2-1, Colloq. Math. 124 (2011), no. 2, 145–155. MR2842943DOI10.4064/cm124-2-1
  12. Marques D., Togbé A., On repdigits as product of consecutive Fibonacci numbers, Rend. Istit. Mat. Univ. Trieste 44 (2012), 393–397. MR3019569
  13. Matveev E. M., An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125–180 (Russian); translation in Izv. Math. 64 (2000), no. 6, 1217–1269. MR1817252
  14. de Weger B. M. M., Algorithms for Diophantine Equations, CWI Tract, 65, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989. MR1026936

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.