A generalised proportional-derivative force/vision controller for torque-driven planar robotic manipulators
Carlos Vidrios-Serrano; Marco Mendoza; Isela Bonilla; Berenice Maldonado-Fregoso
Kybernetika (2020)
- Volume: 56, Issue: 4, page 821-841
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topVidrios-Serrano, Carlos, et al. "A generalised proportional-derivative force/vision controller for torque-driven planar robotic manipulators." Kybernetika 56.4 (2020): 821-841. <http://eudml.org/doc/297367>.
@article{Vidrios2020,
abstract = {In this paper, a family of hybrid control algorithms is presented; where it is merged a free camera-calibration image-based control scheme and a direct force controller, both with the same priority level. The aim of this generalised hybrid controller is to regulate the robot-environment interaction into a two-dimensional task-space. The design of the proposed control structure takes into account most of the dynamic effects present in robot manipulators whose inputs are torque signals. As examples of this generalised structure of hybrid force/vision controllers, a linear proportional-derivative structure and a nonlinear proportional-derivative one (based on the hyperbolic tangent function) are presented. The corresponding stability analysis, using Lyapunov's direct method and invariance theory, is performed to proof the asymptotic stability of the equilibrium vector of the closed-loop system. Experimental tests of the control scheme are presented and a suitable performance is observed in all the cases. Unlike most of the previously presented hybrid schemes, the control structure proposed herein achieves soft contact forces without overshoots, fast convergence of force and position error signals, robustness of the controller in the face of some uncertainties (such as camera rotation), and safe operation of the robot actuators when saturating functions (non-linear case) are used in the mathematical structure. This is one of the first works to propose a generalized structure of hybrid force/vision control that includes a closed loop stability analysis for torque-driven robot manipulators.},
author = {Vidrios-Serrano, Carlos, Mendoza, Marco, Bonilla, Isela, Maldonado-Fregoso, Berenice},
journal = {Kybernetika},
keywords = {control; force; vision; robot manipulator; stability},
language = {eng},
number = {4},
pages = {821-841},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A generalised proportional-derivative force/vision controller for torque-driven planar robotic manipulators},
url = {http://eudml.org/doc/297367},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Vidrios-Serrano, Carlos
AU - Mendoza, Marco
AU - Bonilla, Isela
AU - Maldonado-Fregoso, Berenice
TI - A generalised proportional-derivative force/vision controller for torque-driven planar robotic manipulators
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 4
SP - 821
EP - 841
AB - In this paper, a family of hybrid control algorithms is presented; where it is merged a free camera-calibration image-based control scheme and a direct force controller, both with the same priority level. The aim of this generalised hybrid controller is to regulate the robot-environment interaction into a two-dimensional task-space. The design of the proposed control structure takes into account most of the dynamic effects present in robot manipulators whose inputs are torque signals. As examples of this generalised structure of hybrid force/vision controllers, a linear proportional-derivative structure and a nonlinear proportional-derivative one (based on the hyperbolic tangent function) are presented. The corresponding stability analysis, using Lyapunov's direct method and invariance theory, is performed to proof the asymptotic stability of the equilibrium vector of the closed-loop system. Experimental tests of the control scheme are presented and a suitable performance is observed in all the cases. Unlike most of the previously presented hybrid schemes, the control structure proposed herein achieves soft contact forces without overshoots, fast convergence of force and position error signals, robustness of the controller in the face of some uncertainties (such as camera rotation), and safe operation of the robot actuators when saturating functions (non-linear case) are used in the mathematical structure. This is one of the first works to propose a generalized structure of hybrid force/vision control that includes a closed loop stability analysis for torque-driven robot manipulators.
LA - eng
KW - control; force; vision; robot manipulator; stability
UR - http://eudml.org/doc/297367
ER -
References
top- Aghaie, S., Khanmohammadi, S., Moghadam-Fard, H., Samadi, F., 10.1177/0142331214523307, Trans. Inst. Meas. Control 36 (2014), 6, 837-844. DOI10.1177/0142331214523307
- Bdiwi, M., Winkler, A., Suchy, J., Zschocke, G., 10.1109/ssd.2011.5981425, In: Proc. of the 18th IEEE International Multi-Conference on Systems, Signals and Devices, Sousse 2011, pp. 154-159. DOI10.1109/ssd.2011.5981425
- Carelli, R., Oliva, E., Soria, C., Nasisi, O., 10.1017/s0263574703005423, Robotica 22 (2004), 2, 163-171. DOI10.1017/s0263574703005423
- Chávez-Olivares, C., Reyes-Cortés, F., González-Galván, E., 10.1080/00051144.2015.11828661, Automatika 56(4) (2015), 478-490. DOI10.1080/00051144.2015.11828661
- Chávez-Olivares, C., Reyes-Cortés, F., González-Galván, E., 10.5772/60054, Int. J. Adv. Rob. Syst. 12 (2015), 6, 65. DOI10.5772/60054
- Chiaverini, S., Sciavicco, L., 10.1109/70.246048, IEEE Trans. Rob. Autom. 9 (1993), 4, 361-373. DOI10.1109/70.246048
- Corke, P., 10.1007/978-3-319-54413-7, Springer-Verlag, London 2017. DOI10.1007/978-3-319-54413-7
- Hogan, N., 10.1109/robot.1987.1087854, In: Proc. of the IEEE International Conference on Robotics and Automation, Raleigh 1987, pp. 1047-1054. DOI10.1109/robot.1987.1087854
- Huang, Y., Zhang, X., Chen, X., Ota, J., 10.1177/1687814017748078, Adv. Mech. Eng. 9 (2017), 12, 168781401774807. DOI10.1177/1687814017748078
- Hutchinson, S., Hager, G. D., Corke, P.I., 10.1109/70.538972, IEEE Trans. Rob. Autom. 12 (1996), 5, 651-670. DOI10.1109/70.538972
- Kelly, R., 10.1109/70.538980, IEEE Trans. Rob. Autom. 12 (1996), 5, 759-766. DOI10.1109/70.538980
- Kelly, R., Santibáñez-Dávila, V., Loría-Perez, J. A., Control of Robot Manipulators in Joint Space., Springer-Verlag, London 2006.
- Li, X., Liu, Y.H., Yu, H., 10.1016/j.automatica.2017.12.031, Automatica 90 (2018), 1-7. MR3764378DOI10.1016/j.automatica.2017.12.031
- Lippiello, V., Siciliano, B., Villani, L., 10.1109/robot.2007.363626, In: Proc. of the IEEE International Conference on Robotics and Automation, Roma 2007, pp. 2068-2073. DOI10.1109/robot.2007.363626
- Lippiello, V., Siciliano, B., Villani, L., 10.1109/tro.2006.886832, IEEE Trans. Rob. 23 (2007), 1, 73-86. DOI10.1109/tro.2006.886832
- Long, P., Khalil, W., Martinet, P., 10.1109/icarcv.2014.7064351, In: Proc. of the 13th International Conference on Control Automation Robotics and Vision, Singapore 2014, pp. 474-479. DOI10.1109/icarcv.2014.7064351
- Mezouar, Y., Prats, M., Martinet, P., External hybrid vision/force control., In: Proc. of the IEEE International Conference on Advanced Robotics, Jeju 2007, pp. 170-175.
- Muñoz-Vázquez, A.J., Parra-Vega, V., Sánchez-Orta, A., Ruiz-Sánchez, F., 10.1177/0142331218762272, Trans. Inst. Meas. Control 41 (2019), 2, 573-581. DOI10.1177/0142331218762272
- Mut, V., Nasisi, O., Carelli, R., Kuchen, B., 10.1016/s1474-6670(17)37907-7, In: Proc. of the 6th IFAC Symposium on Robot Control, Vienna 2000, pp. 69-74. DOI10.1016/s1474-6670(17)37907-7
- Nammoto, T., Kosuge, K., Hashimoto, K., 10.1109/coase.2013.6653912, In: Proc. of the IEEE International Conference on Automation Science and Engineering, Wisconsin 2013, pp. 948-953. DOI10.1109/coase.2013.6653912
- Nelson, B. J., Khosla, P. K., 10.1109/70.538976, IEEE Trans. Rob. Autom. 12 (1996), 5, 714-731. DOI10.1109/70.538976
- Ortenzi, V., Marturi, N., Mistry, M., Kuo, J., Stolkin, R., 10.1109/tmech.2018.2865758, IEEE/ASME Trans. Mechatron. 23 (2018), 5, 2402-2412. DOI10.1109/tmech.2018.2865758
- Prats, M., Martinet, P., Pobil, A. P. Del, Lee, S., 10.1007/s11370-007-0008-x, Intell. Serv. Robot. 1 (2008), 3, 253-266. DOI10.1007/s11370-007-0008-x
- Rodriguez-Angeles, A., Vazquez-Chavez, L.F., 10.14736/kyb-2018-1-0135, Kybernetika 54 (2018), 1, 135-154. MR3780960DOI10.14736/kyb-2018-1-0135
- Takegaki, M., Arimoto, S., 10.1115/1.3139651, ASME J. Dyn. Syst. Meas. Control 103 (1981), 119-125. Zbl0473.93012DOI10.1115/1.3139651
- Wang, H., Xie, Y., 10.1016/j.robot.2008.05.003, Rob. Auton. Syst. 57 (2009), 2, 173-181. DOI10.1016/j.robot.2008.05.003
- Yu, L., Fei, S., Huang, J., Li, Y., Yang, G., Sun, L., 10.14736/kyb-2015-2-0309, Kybernetika 51 (2015), 2, 309-320. MR3350564DOI10.14736/kyb-2015-2-0309
- Yüksel, T., 10.1177/0142331217751599, Trans. Inst. Meas. Control 41 (2019), 1, 3-13. DOI10.1177/0142331217751599
- Zhaik, C., 10.14736/kyb-2014-1-0019, Kybernetika 50 (2014), 1, 19-31. MR3195002DOI10.14736/kyb-2014-1-0019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.