A generalised proportional-derivative force/vision controller for torque-driven planar robotic manipulators

Carlos Vidrios-Serrano; Marco Mendoza; Isela Bonilla; Berenice Maldonado-Fregoso

Kybernetika (2020)

  • Volume: 56, Issue: 4, page 821-841
  • ISSN: 0023-5954

Abstract

top
In this paper, a family of hybrid control algorithms is presented; where it is merged a free camera-calibration image-based control scheme and a direct force controller, both with the same priority level. The aim of this generalised hybrid controller is to regulate the robot-environment interaction into a two-dimensional task-space. The design of the proposed control structure takes into account most of the dynamic effects present in robot manipulators whose inputs are torque signals. As examples of this generalised structure of hybrid force/vision controllers, a linear proportional-derivative structure and a nonlinear proportional-derivative one (based on the hyperbolic tangent function) are presented. The corresponding stability analysis, using Lyapunov's direct method and invariance theory, is performed to proof the asymptotic stability of the equilibrium vector of the closed-loop system. Experimental tests of the control scheme are presented and a suitable performance is observed in all the cases. Unlike most of the previously presented hybrid schemes, the control structure proposed herein achieves soft contact forces without overshoots, fast convergence of force and position error signals, robustness of the controller in the face of some uncertainties (such as camera rotation), and safe operation of the robot actuators when saturating functions (non-linear case) are used in the mathematical structure. This is one of the first works to propose a generalized structure of hybrid force/vision control that includes a closed loop stability analysis for torque-driven robot manipulators.

How to cite

top

Vidrios-Serrano, Carlos, et al. "A generalised proportional-derivative force/vision controller for torque-driven planar robotic manipulators." Kybernetika 56.4 (2020): 821-841. <http://eudml.org/doc/297367>.

@article{Vidrios2020,
abstract = {In this paper, a family of hybrid control algorithms is presented; where it is merged a free camera-calibration image-based control scheme and a direct force controller, both with the same priority level. The aim of this generalised hybrid controller is to regulate the robot-environment interaction into a two-dimensional task-space. The design of the proposed control structure takes into account most of the dynamic effects present in robot manipulators whose inputs are torque signals. As examples of this generalised structure of hybrid force/vision controllers, a linear proportional-derivative structure and a nonlinear proportional-derivative one (based on the hyperbolic tangent function) are presented. The corresponding stability analysis, using Lyapunov's direct method and invariance theory, is performed to proof the asymptotic stability of the equilibrium vector of the closed-loop system. Experimental tests of the control scheme are presented and a suitable performance is observed in all the cases. Unlike most of the previously presented hybrid schemes, the control structure proposed herein achieves soft contact forces without overshoots, fast convergence of force and position error signals, robustness of the controller in the face of some uncertainties (such as camera rotation), and safe operation of the robot actuators when saturating functions (non-linear case) are used in the mathematical structure. This is one of the first works to propose a generalized structure of hybrid force/vision control that includes a closed loop stability analysis for torque-driven robot manipulators.},
author = {Vidrios-Serrano, Carlos, Mendoza, Marco, Bonilla, Isela, Maldonado-Fregoso, Berenice},
journal = {Kybernetika},
keywords = {control; force; vision; robot manipulator; stability},
language = {eng},
number = {4},
pages = {821-841},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A generalised proportional-derivative force/vision controller for torque-driven planar robotic manipulators},
url = {http://eudml.org/doc/297367},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Vidrios-Serrano, Carlos
AU - Mendoza, Marco
AU - Bonilla, Isela
AU - Maldonado-Fregoso, Berenice
TI - A generalised proportional-derivative force/vision controller for torque-driven planar robotic manipulators
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 4
SP - 821
EP - 841
AB - In this paper, a family of hybrid control algorithms is presented; where it is merged a free camera-calibration image-based control scheme and a direct force controller, both with the same priority level. The aim of this generalised hybrid controller is to regulate the robot-environment interaction into a two-dimensional task-space. The design of the proposed control structure takes into account most of the dynamic effects present in robot manipulators whose inputs are torque signals. As examples of this generalised structure of hybrid force/vision controllers, a linear proportional-derivative structure and a nonlinear proportional-derivative one (based on the hyperbolic tangent function) are presented. The corresponding stability analysis, using Lyapunov's direct method and invariance theory, is performed to proof the asymptotic stability of the equilibrium vector of the closed-loop system. Experimental tests of the control scheme are presented and a suitable performance is observed in all the cases. Unlike most of the previously presented hybrid schemes, the control structure proposed herein achieves soft contact forces without overshoots, fast convergence of force and position error signals, robustness of the controller in the face of some uncertainties (such as camera rotation), and safe operation of the robot actuators when saturating functions (non-linear case) are used in the mathematical structure. This is one of the first works to propose a generalized structure of hybrid force/vision control that includes a closed loop stability analysis for torque-driven robot manipulators.
LA - eng
KW - control; force; vision; robot manipulator; stability
UR - http://eudml.org/doc/297367
ER -

References

top
  1. Aghaie, S., Khanmohammadi, S., Moghadam-Fard, H., Samadi, F., 10.1177/0142331214523307, Trans. Inst. Meas. Control 36 (2014), 6, 837-844. DOI10.1177/0142331214523307
  2. Bdiwi, M., Winkler, A., Suchy, J., Zschocke, G., 10.1109/ssd.2011.5981425, In: Proc. of the 18th IEEE International Multi-Conference on Systems, Signals and Devices, Sousse 2011, pp. 154-159. DOI10.1109/ssd.2011.5981425
  3. Carelli, R., Oliva, E., Soria, C., Nasisi, O., 10.1017/s0263574703005423, Robotica 22 (2004), 2, 163-171. DOI10.1017/s0263574703005423
  4. Chávez-Olivares, C., Reyes-Cortés, F., González-Galván, E., 10.1080/00051144.2015.11828661, Automatika 56(4) (2015), 478-490. DOI10.1080/00051144.2015.11828661
  5. Chávez-Olivares, C., Reyes-Cortés, F., González-Galván, E., 10.5772/60054, Int. J. Adv. Rob. Syst. 12 (2015), 6, 65. DOI10.5772/60054
  6. Chiaverini, S., Sciavicco, L., 10.1109/70.246048, IEEE Trans. Rob. Autom. 9 (1993), 4, 361-373. DOI10.1109/70.246048
  7. Corke, P., 10.1007/978-3-319-54413-7, Springer-Verlag, London 2017. DOI10.1007/978-3-319-54413-7
  8. Hogan, N., 10.1109/robot.1987.1087854, In: Proc. of the IEEE International Conference on Robotics and Automation, Raleigh 1987, pp. 1047-1054. DOI10.1109/robot.1987.1087854
  9. Huang, Y., Zhang, X., Chen, X., Ota, J., 10.1177/1687814017748078, Adv. Mech. Eng. 9 (2017), 12, 168781401774807. DOI10.1177/1687814017748078
  10. Hutchinson, S., Hager, G. D., Corke, P.I., 10.1109/70.538972, IEEE Trans. Rob. Autom. 12 (1996), 5, 651-670. DOI10.1109/70.538972
  11. Kelly, R., 10.1109/70.538980, IEEE Trans. Rob. Autom. 12 (1996), 5, 759-766. DOI10.1109/70.538980
  12. Kelly, R., Santibáñez-Dávila, V., Loría-Perez, J. A., Control of Robot Manipulators in Joint Space., Springer-Verlag, London 2006. 
  13. Li, X., Liu, Y.H., Yu, H., 10.1016/j.automatica.2017.12.031, Automatica 90 (2018), 1-7. MR3764378DOI10.1016/j.automatica.2017.12.031
  14. Lippiello, V., Siciliano, B., Villani, L., 10.1109/robot.2007.363626, In: Proc. of the IEEE International Conference on Robotics and Automation, Roma 2007, pp. 2068-2073. DOI10.1109/robot.2007.363626
  15. Lippiello, V., Siciliano, B., Villani, L., 10.1109/tro.2006.886832, IEEE Trans. Rob. 23 (2007), 1, 73-86. DOI10.1109/tro.2006.886832
  16. Long, P., Khalil, W., Martinet, P., 10.1109/icarcv.2014.7064351, In: Proc. of the 13th International Conference on Control Automation Robotics and Vision, Singapore 2014, pp. 474-479. DOI10.1109/icarcv.2014.7064351
  17. Mezouar, Y., Prats, M., Martinet, P., External hybrid vision/force control., In: Proc. of the IEEE International Conference on Advanced Robotics, Jeju 2007, pp. 170-175. 
  18. Muñoz-Vázquez, A.J., Parra-Vega, V., Sánchez-Orta, A., Ruiz-Sánchez, F., 10.1177/0142331218762272, Trans. Inst. Meas. Control 41 (2019), 2, 573-581. DOI10.1177/0142331218762272
  19. Mut, V., Nasisi, O., Carelli, R., Kuchen, B., 10.1016/s1474-6670(17)37907-7, In: Proc. of the 6th IFAC Symposium on Robot Control, Vienna 2000, pp. 69-74. DOI10.1016/s1474-6670(17)37907-7
  20. Nammoto, T., Kosuge, K., Hashimoto, K., 10.1109/coase.2013.6653912, In: Proc. of the IEEE International Conference on Automation Science and Engineering, Wisconsin 2013, pp. 948-953. DOI10.1109/coase.2013.6653912
  21. Nelson, B. J., Khosla, P. K., 10.1109/70.538976, IEEE Trans. Rob. Autom. 12 (1996), 5, 714-731. DOI10.1109/70.538976
  22. Ortenzi, V., Marturi, N., Mistry, M., Kuo, J., Stolkin, R., 10.1109/tmech.2018.2865758, IEEE/ASME Trans. Mechatron. 23 (2018), 5, 2402-2412. DOI10.1109/tmech.2018.2865758
  23. Prats, M., Martinet, P., Pobil, A. P. Del, Lee, S., 10.1007/s11370-007-0008-x, Intell. Serv. Robot. 1 (2008), 3, 253-266. DOI10.1007/s11370-007-0008-x
  24. Rodriguez-Angeles, A., Vazquez-Chavez, L.F., 10.14736/kyb-2018-1-0135, Kybernetika 54 (2018), 1, 135-154. MR3780960DOI10.14736/kyb-2018-1-0135
  25. Takegaki, M., Arimoto, S., 10.1115/1.3139651, ASME J. Dyn. Syst. Meas. Control 103 (1981), 119-125. Zbl0473.93012DOI10.1115/1.3139651
  26. Wang, H., Xie, Y., 10.1016/j.robot.2008.05.003, Rob. Auton. Syst. 57 (2009), 2, 173-181. DOI10.1016/j.robot.2008.05.003
  27. Yu, L., Fei, S., Huang, J., Li, Y., Yang, G., Sun, L., 10.14736/kyb-2015-2-0309, Kybernetika 51 (2015), 2, 309-320. MR3350564DOI10.14736/kyb-2015-2-0309
  28. Yüksel, T., 10.1177/0142331217751599, Trans. Inst. Meas. Control 41 (2019), 1, 3-13. DOI10.1177/0142331217751599
  29. Zhaik, C., 10.14736/kyb-2014-1-0019, Kybernetika 50 (2014), 1, 19-31. MR3195002DOI10.14736/kyb-2014-1-0019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.