Lie commutators in a free diassociative algebra

A.S. Dzhumadil'daev; N.A. Ismailov; A.T. Orazgaliyev

Communications in Mathematics (2020)

  • Volume: 28, Issue: 2, page 155-160
  • ISSN: 1804-1388

Abstract

top
We give a criterion for Leibniz elements in a free diassociative algebra. In the diassociative case one can consider two versions of Lie commutators. We give criterions for elements of diassociative algebras to be Lie under these commutators. One of them corresponds to Leibniz elements. It generalizes the Dynkin-Specht-Wever criterion for Lie elements in a free associative algebra.

How to cite

top

Dzhumadil'daev, A.S., Ismailov, N.A., and Orazgaliyev, A.T.. "Lie commutators in a free diassociative algebra." Communications in Mathematics 28.2 (2020): 155-160. <http://eudml.org/doc/297376>.

@article{Dzhumadildaev2020,
abstract = {We give a criterion for Leibniz elements in a free diassociative algebra. In the diassociative case one can consider two versions of Lie commutators. We give criterions for elements of diassociative algebras to be Lie under these commutators. One of them corresponds to Leibniz elements. It generalizes the Dynkin-Specht-Wever criterion for Lie elements in a free associative algebra.},
author = {Dzhumadil'daev, A.S., Ismailov, N.A., Orazgaliyev, A.T.},
journal = {Communications in Mathematics},
keywords = {Diassociative algebars; Leibniz elements; Dynkin-Specht-Wever criterion},
language = {eng},
number = {2},
pages = {155-160},
publisher = {University of Ostrava},
title = {Lie commutators in a free diassociative algebra},
url = {http://eudml.org/doc/297376},
volume = {28},
year = {2020},
}

TY - JOUR
AU - Dzhumadil'daev, A.S.
AU - Ismailov, N.A.
AU - Orazgaliyev, A.T.
TI - Lie commutators in a free diassociative algebra
JO - Communications in Mathematics
PY - 2020
PB - University of Ostrava
VL - 28
IS - 2
SP - 155
EP - 160
AB - We give a criterion for Leibniz elements in a free diassociative algebra. In the diassociative case one can consider two versions of Lie commutators. We give criterions for elements of diassociative algebras to be Lie under these commutators. One of them corresponds to Leibniz elements. It generalizes the Dynkin-Specht-Wever criterion for Lie elements in a free associative algebra.
LA - eng
KW - Diassociative algebars; Leibniz elements; Dynkin-Specht-Wever criterion
UR - http://eudml.org/doc/297376
ER -

References

top
  1. Bloch, A., A generalization of the concept of a Lie algebra, Doklady Akademii Nauk -- Russian Academy of Sciences, 165, 3, 1965, 471-473, (1965) MR0193114
  2. Bremner, M.R., Dotsenko, V., Bilinear operations in the diassociative operad, preprint. 
  3. Demir, I., Misra, K.C., Stitzinger, E., On some structures of Leibniz algebras, Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics, Contemporary Mathematics, 623, 2014, 41-54, (2014) MR3288621
  4. Jacobson, N., Lie algebras, 1962, Interscience Publishers, Wiley, New York, (1962) Zbl0121.27504MR0143793
  5. Loday, J.-L., Une version non commutative des algébres de Lie: Les algébres de Leibniz, L'Enseignement Mathématique, 39, 2, 1993, 269-293, (1993) MR1252069
  6. Loday, J.-L., Algébres ayant deux opérations associatives: les digébres, Comptes rendus de l'Académie des Sciences, 321, 1995, 141-146, (1995) MR1345436
  7. Loday, J.-L., Pirashvili, T., 10.1007/BF01445099, Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag, (1993) MR1213376DOI10.1007/BF01445099
  8. Loday, J.-L., 10.1007/b80864, 2001, 7-66, Springer-Verlag, Berlin, Chapter in: Dialgebras and related operads, Lecture Notes in Mathematics, Vol. 1763, J.-L. Loday, F. Chapoton, F. Goichot, and A. Frabetti. (2001) MR1860994DOI10.1007/b80864

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.