On dual Ramsey theorems for relational structures
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 2, page 553-585
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMašulović, Dragan. "On dual Ramsey theorems for relational structures." Czechoslovak Mathematical Journal 70.2 (2020): 553-585. <http://eudml.org/doc/297381>.
@article{Mašulović2020,
abstract = {We discuss dual Ramsey statements for several classes of finite relational structures (such as finite linearly ordered graphs, finite linearly ordered metric spaces and finite posets with a linear extension) and conclude the paper with another rendering of the Nešetřil-Rödl Theorem for relational structures. Instead of embeddings which are crucial for ``direct'' Ramsey results, for each class of structures under consideration we propose a special class of quotient maps and prove a dual Ramsey theorem in such a setting. Although our methods are based on reinterpreting the (dual) Ramsey property in the language of category theory, all our results are about classes of finite structures.},
author = {Mašulović, Dragan},
journal = {Czechoslovak Mathematical Journal},
keywords = {dual Ramsey property; finite relational structure; category theory},
language = {eng},
number = {2},
pages = {553-585},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On dual Ramsey theorems for relational structures},
url = {http://eudml.org/doc/297381},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Mašulović, Dragan
TI - On dual Ramsey theorems for relational structures
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 553
EP - 585
AB - We discuss dual Ramsey statements for several classes of finite relational structures (such as finite linearly ordered graphs, finite linearly ordered metric spaces and finite posets with a linear extension) and conclude the paper with another rendering of the Nešetřil-Rödl Theorem for relational structures. Instead of embeddings which are crucial for ``direct'' Ramsey results, for each class of structures under consideration we propose a special class of quotient maps and prove a dual Ramsey theorem in such a setting. Although our methods are based on reinterpreting the (dual) Ramsey property in the language of category theory, all our results are about classes of finite structures.
LA - eng
KW - dual Ramsey property; finite relational structure; category theory
UR - http://eudml.org/doc/297381
ER -
References
top- Abramson, F. G., Harrington, L. A., 10.2307/2273534, J. Symb. Log. 43 (1978), 572-600. (1978) Zbl0391.03027MR0503795DOI10.2307/2273534
- Adámek, J., Herrlich, H., Strecker, G. E., Abstract and Concrete Categories: The Joy of Cats, Dover Books on Mathematics, Dover Publications, Mineola (2009). (2009) Zbl0695.18001MR1051419
- Frankl, P., Graham, R. L., Rödl, V., 10.1016/0097-3165(87)90064-1, J. Comb. Theory, Ser. A 44 (1987), 120-128. (1987) Zbl0608.05059MR0871393DOI10.1016/0097-3165(87)90064-1
- Graham, R. L., Rothschild, B. L., 10.1090/S0002-9947-1971-0284352-8, Trans. Am. Math. Soc. 159 (1971), 257-292. (1971) Zbl0233.05003MR0284352DOI10.1090/S0002-9947-1971-0284352-8
- Mašulović, D., A dual Ramsey theorem for permutations, Electron. J. Comb. 24 (2017), Article ID P3.39, 12 pages. (2017) Zbl1369.05200MR3691556
- Mašulović, D., 10.1016/j.ejc.2018.01.006, Eur. J. Comb. 70 (2018), 268-283. (2018) Zbl1384.05153MR3779618DOI10.1016/j.ejc.2018.01.006
- Mašulović, D., Scow, L., 10.1007/s00012-017-0453-0, Algebra Univers. 78 (2017), 159-179. (2017) Zbl1421.08003MR3697187DOI10.1007/s00012-017-0453-0
- Nešetřil, J., Ramsey theory, Handbook of Combinatorics, Vol. 2 R. L. Graham et al. Elsevier, Amsterdam, (1995), 1331-1403. (1995) Zbl0848.05065MR1373681
- Nešetřil, J., 10.1016/j.ejc.2004.11.003, Eur. J. Comb. 28 (2007), 457-468. (2007) Zbl1106.05099MR2261831DOI10.1016/j.ejc.2004.11.003
- Nešetřil, J., Rödl, V., 10.1016/0097-3165(77)90004-8, J. Comb. Theory, Ser. A 22 (1977), 289-312. (1977) Zbl0361.05017MR0437351DOI10.1016/0097-3165(77)90004-8
- Nešetřil, J., Rödl, V., Dual Ramsey type theorems, Abstracta Eighth Winter School on Abstract Analysis, Mathematical Institute AS CR, Prague (1980), Z. Frolík 121-123. (1980)
- Nešetřil, J., Rödl, V., 10.1016/0097-3165(83)90055-9, J. Comb. Theory, Ser. A 34 (1983), 183-201. (1983) Zbl0515.05010MR0692827DOI10.1016/0097-3165(83)90055-9
- Nešetřil, J., Rödl, V., 10.1016/0012-365X(89)90097-6, Discrete Math. 75 (1989), 327-334. (1989) Zbl0671.05006MR1001405DOI10.1016/0012-365X(89)90097-6
- Prömel, H. J., 10.1016/0097-3165(85)90036-6, J. Comb. Theory, Ser. A 39 (1985), 177-208. (1985) Zbl0638.05005MR0793270DOI10.1016/0097-3165(85)90036-6
- Prömel, H. J., Voigt, B., 10.1016/S0195-6698(86)80042-7, Eur. J. Comb. 7 (1986), 161-170. (1986) Zbl0606.05002MR0856329DOI10.1016/S0195-6698(86)80042-7
- Prömel, H. J., Voigt, B., 10.1090/S0002-9947-1988-0957064-5, Trans. Am. Math. Soc. 309 (1988), 113-137. (1988) Zbl0662.05006MR0957064DOI10.1090/S0002-9947-1988-0957064-5
- Ramsey, F. P., 10.1112/plms/s2-30.1.264, Proc. Lond. Math. Soc. 30 (1930), 264-286 9999JFM99999 55.0032.04. (1930) MR1576401DOI10.1112/plms/s2-30.1.264
- Sokić, M., 10.1007/s11083-011-9196-2, Order 29 (2012), 31-47. (2012) Zbl1254.03067MR2948747DOI10.1007/s11083-011-9196-2
- Solecki, S., 10.1016/j.jcta.2009.12.004, J. Comb. Theory, Ser. A 117 (2010), 704-714. (2010) Zbl1247.05256MR2645186DOI10.1016/j.jcta.2009.12.004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.