On dual Ramsey theorems for relational structures

Dragan Mašulović

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 2, page 553-585
  • ISSN: 0011-4642

Abstract

top
We discuss dual Ramsey statements for several classes of finite relational structures (such as finite linearly ordered graphs, finite linearly ordered metric spaces and finite posets with a linear extension) and conclude the paper with another rendering of the Nešetřil-Rödl Theorem for relational structures. Instead of embeddings which are crucial for ``direct'' Ramsey results, for each class of structures under consideration we propose a special class of quotient maps and prove a dual Ramsey theorem in such a setting. Although our methods are based on reinterpreting the (dual) Ramsey property in the language of category theory, all our results are about classes of finite structures.

How to cite

top

Mašulović, Dragan. "On dual Ramsey theorems for relational structures." Czechoslovak Mathematical Journal 70.2 (2020): 553-585. <http://eudml.org/doc/297381>.

@article{Mašulović2020,
abstract = {We discuss dual Ramsey statements for several classes of finite relational structures (such as finite linearly ordered graphs, finite linearly ordered metric spaces and finite posets with a linear extension) and conclude the paper with another rendering of the Nešetřil-Rödl Theorem for relational structures. Instead of embeddings which are crucial for ``direct'' Ramsey results, for each class of structures under consideration we propose a special class of quotient maps and prove a dual Ramsey theorem in such a setting. Although our methods are based on reinterpreting the (dual) Ramsey property in the language of category theory, all our results are about classes of finite structures.},
author = {Mašulović, Dragan},
journal = {Czechoslovak Mathematical Journal},
keywords = {dual Ramsey property; finite relational structure; category theory},
language = {eng},
number = {2},
pages = {553-585},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On dual Ramsey theorems for relational structures},
url = {http://eudml.org/doc/297381},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Mašulović, Dragan
TI - On dual Ramsey theorems for relational structures
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 553
EP - 585
AB - We discuss dual Ramsey statements for several classes of finite relational structures (such as finite linearly ordered graphs, finite linearly ordered metric spaces and finite posets with a linear extension) and conclude the paper with another rendering of the Nešetřil-Rödl Theorem for relational structures. Instead of embeddings which are crucial for ``direct'' Ramsey results, for each class of structures under consideration we propose a special class of quotient maps and prove a dual Ramsey theorem in such a setting. Although our methods are based on reinterpreting the (dual) Ramsey property in the language of category theory, all our results are about classes of finite structures.
LA - eng
KW - dual Ramsey property; finite relational structure; category theory
UR - http://eudml.org/doc/297381
ER -

References

top
  1. Abramson, F. G., Harrington, L. A., 10.2307/2273534, J. Symb. Log. 43 (1978), 572-600. (1978) Zbl0391.03027MR0503795DOI10.2307/2273534
  2. Adámek, J., Herrlich, H., Strecker, G. E., Abstract and Concrete Categories: The Joy of Cats, Dover Books on Mathematics, Dover Publications, Mineola (2009). (2009) Zbl0695.18001MR1051419
  3. Frankl, P., Graham, R. L., Rödl, V., 10.1016/0097-3165(87)90064-1, J. Comb. Theory, Ser. A 44 (1987), 120-128. (1987) Zbl0608.05059MR0871393DOI10.1016/0097-3165(87)90064-1
  4. Graham, R. L., Rothschild, B. L., 10.1090/S0002-9947-1971-0284352-8, Trans. Am. Math. Soc. 159 (1971), 257-292. (1971) Zbl0233.05003MR0284352DOI10.1090/S0002-9947-1971-0284352-8
  5. Mašulović, D., A dual Ramsey theorem for permutations, Electron. J. Comb. 24 (2017), Article ID P3.39, 12 pages. (2017) Zbl1369.05200MR3691556
  6. Mašulović, D., 10.1016/j.ejc.2018.01.006, Eur. J. Comb. 70 (2018), 268-283. (2018) Zbl1384.05153MR3779618DOI10.1016/j.ejc.2018.01.006
  7. Mašulović, D., Scow, L., 10.1007/s00012-017-0453-0, Algebra Univers. 78 (2017), 159-179. (2017) Zbl1421.08003MR3697187DOI10.1007/s00012-017-0453-0
  8. Nešetřil, J., Ramsey theory, Handbook of Combinatorics, Vol. 2 R. L. Graham et al. Elsevier, Amsterdam, (1995), 1331-1403. (1995) Zbl0848.05065MR1373681
  9. Nešetřil, J., 10.1016/j.ejc.2004.11.003, Eur. J. Comb. 28 (2007), 457-468. (2007) Zbl1106.05099MR2261831DOI10.1016/j.ejc.2004.11.003
  10. Nešetřil, J., Rödl, V., 10.1016/0097-3165(77)90004-8, J. Comb. Theory, Ser. A 22 (1977), 289-312. (1977) Zbl0361.05017MR0437351DOI10.1016/0097-3165(77)90004-8
  11. Nešetřil, J., Rödl, V., Dual Ramsey type theorems, Abstracta Eighth Winter School on Abstract Analysis, Mathematical Institute AS CR, Prague (1980), Z. Frolík 121-123. (1980) 
  12. Nešetřil, J., Rödl, V., 10.1016/0097-3165(83)90055-9, J. Comb. Theory, Ser. A 34 (1983), 183-201. (1983) Zbl0515.05010MR0692827DOI10.1016/0097-3165(83)90055-9
  13. Nešetřil, J., Rödl, V., 10.1016/0012-365X(89)90097-6, Discrete Math. 75 (1989), 327-334. (1989) Zbl0671.05006MR1001405DOI10.1016/0012-365X(89)90097-6
  14. Prömel, H. J., 10.1016/0097-3165(85)90036-6, J. Comb. Theory, Ser. A 39 (1985), 177-208. (1985) Zbl0638.05005MR0793270DOI10.1016/0097-3165(85)90036-6
  15. Prömel, H. J., Voigt, B., 10.1016/S0195-6698(86)80042-7, Eur. J. Comb. 7 (1986), 161-170. (1986) Zbl0606.05002MR0856329DOI10.1016/S0195-6698(86)80042-7
  16. Prömel, H. J., Voigt, B., 10.1090/S0002-9947-1988-0957064-5, Trans. Am. Math. Soc. 309 (1988), 113-137. (1988) Zbl0662.05006MR0957064DOI10.1090/S0002-9947-1988-0957064-5
  17. Ramsey, F. P., 10.1112/plms/s2-30.1.264, Proc. Lond. Math. Soc. 30 (1930), 264-286 9999JFM99999 55.0032.04. (1930) MR1576401DOI10.1112/plms/s2-30.1.264
  18. Sokić, M., 10.1007/s11083-011-9196-2, Order 29 (2012), 31-47. (2012) Zbl1254.03067MR2948747DOI10.1007/s11083-011-9196-2
  19. Solecki, S., 10.1016/j.jcta.2009.12.004, J. Comb. Theory, Ser. A 117 (2010), 704-714. (2010) Zbl1247.05256MR2645186DOI10.1016/j.jcta.2009.12.004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.