Exponential domination in function spaces
Vladimir Vladimirovich Tkachuk
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 3, page 397-408
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topTkachuk, Vladimir Vladimirovich. "Exponential domination in function spaces." Commentationes Mathematicae Universitatis Carolinae 61.3 (2020): 397-408. <http://eudml.org/doc/297383>.
@article{Tkachuk2020,
abstract = {Given a Tychonoff space $X$ and an infinite cardinal $\kappa $, we prove that exponential $\kappa $-domination in $X$ is equivalent to exponential $\kappa $-cofinality of $\,C_p(X)$. On the other hand, exponential $\kappa $-cofinality of $X$ is equivalent to exponential $\kappa $-domination in $C_p(X)$. We show that every exponentially $\kappa $-cofinal space $X$ has a $\kappa ^+$-small diagonal; besides, if $X$ is $\kappa $-stable, then $nw(X) \le \kappa $. In particular, any compact exponentially $\kappa $-cofinal space has weight not exceeding $\kappa $. We also establish that any exponentially $\kappa $-cofinal space $X$ with $l(X) \le \kappa $ and $t(X) \le \kappa $ has $i$-weight not exceeding $\kappa $ while for any cardinal $\kappa $, there exists an exponentially $ø$-cofinal space $X$ such that $l(X) \ge \kappa $.},
author = {Tkachuk, Vladimir Vladimirovich},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {exponential $\kappa $-domination; exponential $\kappa $-cofinality; $\kappa $-stable space; $i$-weight; function space; duality; $\kappa ^+$-small diagonal},
language = {eng},
number = {3},
pages = {397-408},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Exponential domination in function spaces},
url = {http://eudml.org/doc/297383},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Tkachuk, Vladimir Vladimirovich
TI - Exponential domination in function spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 3
SP - 397
EP - 408
AB - Given a Tychonoff space $X$ and an infinite cardinal $\kappa $, we prove that exponential $\kappa $-domination in $X$ is equivalent to exponential $\kappa $-cofinality of $\,C_p(X)$. On the other hand, exponential $\kappa $-cofinality of $X$ is equivalent to exponential $\kappa $-domination in $C_p(X)$. We show that every exponentially $\kappa $-cofinal space $X$ has a $\kappa ^+$-small diagonal; besides, if $X$ is $\kappa $-stable, then $nw(X) \le \kappa $. In particular, any compact exponentially $\kappa $-cofinal space has weight not exceeding $\kappa $. We also establish that any exponentially $\kappa $-cofinal space $X$ with $l(X) \le \kappa $ and $t(X) \le \kappa $ has $i$-weight not exceeding $\kappa $ while for any cardinal $\kappa $, there exists an exponentially $ø$-cofinal space $X$ such that $l(X) \ge \kappa $.
LA - eng
KW - exponential $\kappa $-domination; exponential $\kappa $-cofinality; $\kappa $-stable space; $i$-weight; function space; duality; $\kappa ^+$-small diagonal
UR - http://eudml.org/doc/297383
ER -
References
top- Arkhangel'skiĭ A. V., Factorization theorems and spaces of functions: stability and monolithism, Dokl. Akad. Nauk SSSR 265 (1982), no. 5, 1039–1043 (Russian). MR0670475
- Arkhangel'skiĭ A. V., Continuous mappings, factorization theorems and spaces of functions, Trudy Moskov. Mat. Obshch. 47 (1984), 3–21, 246 (Russian). MR0774944
- Arkhangel'skiĭ A. V., 10.1007/978-94-011-2598-7_4, Mathematics and Its Applications (Soviet Series), 78, Kluwer Academic Publishers Group, Dordrecht, 1992. MR1144519DOI10.1007/978-94-011-2598-7_4
- Asanov M. O., On cardinal invariants of spaces of continuous functions, Sovr. Topologia i Teoria Mnozhestv 2 (1979), 8–12 (Russian).
- Engelking R., General Topology,, Monografie Matematyczne, 60, PWN—Polish Scientific Publishers, Warsaw, 1977. MR0500780
- Gruenhage G., Tkachuk V. V., Wilson R. G., 10.1016/j.topol.2020.107306, Topology Appl. 282 (2020), 107306, 10 pages. MR4116835DOI10.1016/j.topol.2020.107306
- Hodel R. E., Cardinal Functions. I., Handbook of Set-Theoretic Topology, North Holland, Amsterdam, 1984, 1–61. MR0776620
- Hušek M., Topological spaces without -accessible diagonal, Comment. Math. Univ. Carolinae 18 (1977), no. 4, 777–788. MR0515009
- Juhász I., Szentmiklóssy Z., 10.2307/2159502, Proc. Amer. Math. Soc. 116 (1992), no. 4, 1153–1160. Zbl0767.54002MR1137223DOI10.2307/2159502
- Noble N., 10.1090/S0002-9939-1974-0328855-4, Proc. Amer. Math. Soc. 42 (1974), no. 1, 228–233. MR0328855DOI10.1090/S0002-9939-1974-0328855-4
- Pytkeev E. G., Tightness of spaces of continuous functions, Uspekhi Mat. Nauk 37 (1982), no. 1(223), 157–158 (Russian). MR0643782
- Tkachuk V. V., A -Theory Problem Book, Topological and Function Spaces, Problem Books in Mathematics, Springer, New York, 2011. MR3024898
- Tkachuk V. V., A -Theory Problem Book, Special Features of Function Spaces, Problem Books in Mathematics, Springer, Cham, 2014. MR3243753
- Tkachuk V. V., A -Theory Problem Book, Compactness in Function Spaces, Problem Books in Mathematics, Springer, Cham, 2015. MR3243753
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.