On g -natural conformal vector fields on unit tangent bundles

Mohamed Tahar Kadaoui Abbassi; Noura Amri

Czechoslovak Mathematical Journal (2021)

  • Issue: 1, page 75-109
  • ISSN: 0011-4642

Abstract

top
We study conformal and Killing vector fields on the unit tangent bundle, over a Riemannian manifold, equipped with an arbitrary pseudo-Riemannian g -natural metric. We characterize the conformal and Killing conditions for classical lifts of vector fields and we give a full classification of conformal fiber-preserving vector fields on the unit tangent bundle endowed with an arbitrary pseudo-Riemannian Kaluza-Klein type metric.

How to cite

top

Abbassi, Mohamed Tahar Kadaoui, and Amri, Noura. "On $g$-natural conformal vector fields on unit tangent bundles." Czechoslovak Mathematical Journal (2021): 75-109. <http://eudml.org/doc/297384>.

@article{Abbassi2021,
abstract = {We study conformal and Killing vector fields on the unit tangent bundle, over a Riemannian manifold, equipped with an arbitrary pseudo-Riemannian $g$-natural metric. We characterize the conformal and Killing conditions for classical lifts of vector fields and we give a full classification of conformal fiber-preserving vector fields on the unit tangent bundle endowed with an arbitrary pseudo-Riemannian Kaluza-Klein type metric.},
author = {Abbassi, Mohamed Tahar Kadaoui, Amri, Noura},
journal = {Czechoslovak Mathematical Journal},
keywords = {conformal vector field; unit tangent bundle; $g$-natural metric},
language = {eng},
number = {1},
pages = {75-109},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $g$-natural conformal vector fields on unit tangent bundles},
url = {http://eudml.org/doc/297384},
year = {2021},
}

TY - JOUR
AU - Abbassi, Mohamed Tahar Kadaoui
AU - Amri, Noura
TI - On $g$-natural conformal vector fields on unit tangent bundles
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 75
EP - 109
AB - We study conformal and Killing vector fields on the unit tangent bundle, over a Riemannian manifold, equipped with an arbitrary pseudo-Riemannian $g$-natural metric. We characterize the conformal and Killing conditions for classical lifts of vector fields and we give a full classification of conformal fiber-preserving vector fields on the unit tangent bundle endowed with an arbitrary pseudo-Riemannian Kaluza-Klein type metric.
LA - eng
KW - conformal vector field; unit tangent bundle; $g$-natural metric
UR - http://eudml.org/doc/297384
ER -

References

top
  1. Abbassi, M. T. K., Métriques naturelles sur le fibré tangent à une variété Riemannienne, Editions universitaires europeennes, Paris (2012), French. (2012) 
  2. Abbassi, M. T. K., Amri, N., Calvaruso, G., 10.1016/j.difgeo.2018.04.006, Differ. Geom. Appl. 59 (2018), 184-203. (2018) Zbl1391.53053MR3804828DOI10.1016/j.difgeo.2018.04.006
  3. Abbassi, M. T. K., Calvaruso, G., 10.1007/s00605-006-0421-9, Monaths. Math. 151 (2007), 89-109. (2007) Zbl1128.53049MR2322938DOI10.1007/s00605-006-0421-9
  4. Abbassi, M. T. K., Calvaruso, G., 10.5817/AM2012-2-81, Arch. Math., Brno 48 (2012), 81-95. (2012) Zbl1274.53112MR2946208DOI10.5817/AM2012-2-81
  5. Abbassi, M. T. K., Kowalski, O., 10.1142/9789812701701_0001, Topics in Almost Hermitian Geometry and Related Fields World Scientific, Hackensack (2005), 1-29. (2005) Zbl1107.53023MR2181488DOI10.1142/9789812701701_0001
  6. Abbassi, M. T. K., Kowalski, O., 10.1016/j.difgeo.2009.05.007, Differ. Geom. Appl. 28 (2010), 131-139. (2010) Zbl1190.53020MR2594457DOI10.1016/j.difgeo.2009.05.007
  7. Abbassi, M. T. K., Kowalski, O., 10.1007/s10455-010-9197-1, Ann. Global Anal. Geom. 38 (2010), 11-20. (2010) Zbl1206.53049MR2657839DOI10.1007/s10455-010-9197-1
  8. Abbassi, M. T. K., Sarih, M., 10.21099/tkbjm/1496164650, Tsukuba J. Math. 27 (2003), 295-306. (2003) Zbl1060.53019MR2025729DOI10.21099/tkbjm/1496164650
  9. Abbassi, M. T. K., Sarih, M., On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math., Brno 41 (2005), 71-92. (2005) Zbl1114.53015MR2142144
  10. Abbassi, M. T. K., Sarih, M., 10.1016/j.difgeo.2004.07.003, Differ. Geom. Appl. 22 (2005), 19-47. (2005) Zbl1068.53016MR2106375DOI10.1016/j.difgeo.2004.07.003
  11. Benyounes, M., Loubeau, E., Todjihounde, L., 10.1216/RMJ-2012-42-3-791, Rocky Mt. J. Math. 42 (2012), 791-821. (2012) Zbl1257.58008MR2966473DOI10.1216/RMJ-2012-42-3-791
  12. Calvaruso, G., Martín-Molina, V., 10.1007/s10231-014-0424-4, Ann. Mat. Pura Appl. (4) 194 (2015), 1359-1380. (2015) Zbl1328.53035MR3383943DOI10.1007/s10231-014-0424-4
  13. Calvaruso, G., Perrone, D., 10.1017/S1446788710000157, J. Aust. Math. Soc. 88 (2010), 323-337. (2010) Zbl1195.53045MR2661453DOI10.1017/S1446788710000157
  14. Calvaruso, G., Perrone, D., 10.1002/mana.201200105, Math. Nachr. 287 (2014), 885-902. (2014) Zbl1304.53070MR3219219DOI10.1002/mana.201200105
  15. Deshmukh, S., 10.1016/j.ajmsc.2016.09.003, Arab J. Math. Sci. 23 (2017), 44-73. (2017) Zbl1356.53043MR3589499DOI10.1016/j.ajmsc.2016.09.003
  16. Dombrowski, P., 10.1515/crll.1962.210.73, J. Reine Angew. Math. 210 (1962), 73-88. (1962) Zbl0105.16002MR141050DOI10.1515/crll.1962.210.73
  17. Ewert-Krzemieniewski, S., 10.1285/i15900932v34n2p107, Note Mat. 34 (2014), 107-133. (2014) Zbl1319.53017MR3315987DOI10.1285/i15900932v34n2p107
  18. Gezer, A., Bilen, L., 10.2478/v10309-012-0009-4, An. Ştiinţ. Univ. ``Ovidius'' Constanţa, Ser. Mat. 20 (2012), 113-128. (2012) Zbl1274.53027MR2928413DOI10.2478/v10309-012-0009-4
  19. Hall, G. S., 10.1142/1729, World Scientific Lecture Notes in Physics 46, World Scientific, River Edge (2004). (2004) Zbl1054.83001MR2109072DOI10.1142/1729
  20. Hedayatian, S., Bidabad, B., Conformal vector fields on tangent bundle of a Riemannian manifold, Iran. J. Sci. Technol, Trans. A, Sci. 29 (2005), 531-539. (2005) Zbl1106.53012MR2239754
  21. Kolář, I., Michor, P. W., Slovák, J., 10.1007/978-3-662-02950-3, Springer, Berlin (1993). (1993) Zbl0782.53013MR1202431DOI10.1007/978-3-662-02950-3
  22. Konno, T., 10.2996/kmj/1138043835, Kodai Math. J. 21 (1998), 61-72. (1998) Zbl0907.53033MR1625061DOI10.2996/kmj/1138043835
  23. Konno, T., 10.32917/hmj/1323700039, Hiroshima Math. J. 41 (2011), 343-366. (2011) Zbl1235.53051MR2895285DOI10.32917/hmj/1323700039
  24. Kowalski, O., Sekizawa, M., Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles - a classification, Bull. Tokyo Gakugei Univ., Sect. IV, Ser. Math. Nat. Sci. 40 (1988), 1-29. (1988) Zbl0656.53021MR0974641
  25. Peyghan, E., Heydari, A., 10.1016/j.jmaa.2008.05.092, J. Math. Anal. Appl. 347 (2008), 136-142. (2008) Zbl1145.53028MR2433831DOI10.1016/j.jmaa.2008.05.092
  26. Sasaki, S., 10.2748/tmj/1178244668, Tohoku Math. J., II. Ser. 10 (1958), 338-354. (1958) Zbl0086.15003MR0112152DOI10.2748/tmj/1178244668
  27. Sasaki, S., 10.2748/tmj/1178244169, Tohoku Math. J., II. Ser. 14 (1962), 146-155. (1962) Zbl0109.40505MR0145456DOI10.2748/tmj/1178244169
  28. Şimşir, F. M., Tezer, C., 10.1007/s00022-005-0033-x, J. Geom. 84 (2005), 133-151. (2005) Zbl1093.53022MR2215371DOI10.1007/s00022-005-0033-x
  29. Tanno, S., 10.1515/crll.1976.282.162, J. Reine Angew. Math. 282 (1976), 162-171. (1976) Zbl0317.53042MR0405285DOI10.1515/crll.1976.282.162
  30. Wood, C. M., 10.1007/BF02568751, Manuscr. Math. 68 (1990), 69-75. (1990) Zbl0713.58010MR1057077DOI10.1007/BF02568751
  31. Yano, K., Kobayashi, S., 10.2969/jmsj/01820194, J. Math. Soc. Japan 18 (1966), 194-210. (1966) Zbl0141.38702MR0193596DOI10.2969/jmsj/01820194
  32. Yano, K., Kobayashi, S., 10.2969/jmsj/01830236, J. Math. Soc. Japan 18 (1966), 236-246. (1966) Zbl0147.21501MR0200857DOI10.2969/jmsj/01830236

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.