On -natural conformal vector fields on unit tangent bundles
Mohamed Tahar Kadaoui Abbassi; Noura Amri
Czechoslovak Mathematical Journal (2021)
- Issue: 1, page 75-109
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAbbassi, Mohamed Tahar Kadaoui, and Amri, Noura. "On $g$-natural conformal vector fields on unit tangent bundles." Czechoslovak Mathematical Journal (2021): 75-109. <http://eudml.org/doc/297384>.
@article{Abbassi2021,
abstract = {We study conformal and Killing vector fields on the unit tangent bundle, over a Riemannian manifold, equipped with an arbitrary pseudo-Riemannian $g$-natural metric. We characterize the conformal and Killing conditions for classical lifts of vector fields and we give a full classification of conformal fiber-preserving vector fields on the unit tangent bundle endowed with an arbitrary pseudo-Riemannian Kaluza-Klein type metric.},
author = {Abbassi, Mohamed Tahar Kadaoui, Amri, Noura},
journal = {Czechoslovak Mathematical Journal},
keywords = {conformal vector field; unit tangent bundle; $g$-natural metric},
language = {eng},
number = {1},
pages = {75-109},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $g$-natural conformal vector fields on unit tangent bundles},
url = {http://eudml.org/doc/297384},
year = {2021},
}
TY - JOUR
AU - Abbassi, Mohamed Tahar Kadaoui
AU - Amri, Noura
TI - On $g$-natural conformal vector fields on unit tangent bundles
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 75
EP - 109
AB - We study conformal and Killing vector fields on the unit tangent bundle, over a Riemannian manifold, equipped with an arbitrary pseudo-Riemannian $g$-natural metric. We characterize the conformal and Killing conditions for classical lifts of vector fields and we give a full classification of conformal fiber-preserving vector fields on the unit tangent bundle endowed with an arbitrary pseudo-Riemannian Kaluza-Klein type metric.
LA - eng
KW - conformal vector field; unit tangent bundle; $g$-natural metric
UR - http://eudml.org/doc/297384
ER -
References
top- Abbassi, M. T. K., Métriques naturelles sur le fibré tangent à une variété Riemannienne, Editions universitaires europeennes, Paris (2012), French. (2012)
- Abbassi, M. T. K., Amri, N., Calvaruso, G., 10.1016/j.difgeo.2018.04.006, Differ. Geom. Appl. 59 (2018), 184-203. (2018) Zbl1391.53053MR3804828DOI10.1016/j.difgeo.2018.04.006
- Abbassi, M. T. K., Calvaruso, G., 10.1007/s00605-006-0421-9, Monaths. Math. 151 (2007), 89-109. (2007) Zbl1128.53049MR2322938DOI10.1007/s00605-006-0421-9
- Abbassi, M. T. K., Calvaruso, G., 10.5817/AM2012-2-81, Arch. Math., Brno 48 (2012), 81-95. (2012) Zbl1274.53112MR2946208DOI10.5817/AM2012-2-81
- Abbassi, M. T. K., Kowalski, O., 10.1142/9789812701701_0001, Topics in Almost Hermitian Geometry and Related Fields World Scientific, Hackensack (2005), 1-29. (2005) Zbl1107.53023MR2181488DOI10.1142/9789812701701_0001
- Abbassi, M. T. K., Kowalski, O., 10.1016/j.difgeo.2009.05.007, Differ. Geom. Appl. 28 (2010), 131-139. (2010) Zbl1190.53020MR2594457DOI10.1016/j.difgeo.2009.05.007
- Abbassi, M. T. K., Kowalski, O., 10.1007/s10455-010-9197-1, Ann. Global Anal. Geom. 38 (2010), 11-20. (2010) Zbl1206.53049MR2657839DOI10.1007/s10455-010-9197-1
- Abbassi, M. T. K., Sarih, M., 10.21099/tkbjm/1496164650, Tsukuba J. Math. 27 (2003), 295-306. (2003) Zbl1060.53019MR2025729DOI10.21099/tkbjm/1496164650
- Abbassi, M. T. K., Sarih, M., On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math., Brno 41 (2005), 71-92. (2005) Zbl1114.53015MR2142144
- Abbassi, M. T. K., Sarih, M., 10.1016/j.difgeo.2004.07.003, Differ. Geom. Appl. 22 (2005), 19-47. (2005) Zbl1068.53016MR2106375DOI10.1016/j.difgeo.2004.07.003
- Benyounes, M., Loubeau, E., Todjihounde, L., 10.1216/RMJ-2012-42-3-791, Rocky Mt. J. Math. 42 (2012), 791-821. (2012) Zbl1257.58008MR2966473DOI10.1216/RMJ-2012-42-3-791
- Calvaruso, G., Martín-Molina, V., 10.1007/s10231-014-0424-4, Ann. Mat. Pura Appl. (4) 194 (2015), 1359-1380. (2015) Zbl1328.53035MR3383943DOI10.1007/s10231-014-0424-4
- Calvaruso, G., Perrone, D., 10.1017/S1446788710000157, J. Aust. Math. Soc. 88 (2010), 323-337. (2010) Zbl1195.53045MR2661453DOI10.1017/S1446788710000157
- Calvaruso, G., Perrone, D., 10.1002/mana.201200105, Math. Nachr. 287 (2014), 885-902. (2014) Zbl1304.53070MR3219219DOI10.1002/mana.201200105
- Deshmukh, S., 10.1016/j.ajmsc.2016.09.003, Arab J. Math. Sci. 23 (2017), 44-73. (2017) Zbl1356.53043MR3589499DOI10.1016/j.ajmsc.2016.09.003
- Dombrowski, P., 10.1515/crll.1962.210.73, J. Reine Angew. Math. 210 (1962), 73-88. (1962) Zbl0105.16002MR141050DOI10.1515/crll.1962.210.73
- Ewert-Krzemieniewski, S., 10.1285/i15900932v34n2p107, Note Mat. 34 (2014), 107-133. (2014) Zbl1319.53017MR3315987DOI10.1285/i15900932v34n2p107
- Gezer, A., Bilen, L., 10.2478/v10309-012-0009-4, An. Ştiinţ. Univ. ``Ovidius'' Constanţa, Ser. Mat. 20 (2012), 113-128. (2012) Zbl1274.53027MR2928413DOI10.2478/v10309-012-0009-4
- Hall, G. S., 10.1142/1729, World Scientific Lecture Notes in Physics 46, World Scientific, River Edge (2004). (2004) Zbl1054.83001MR2109072DOI10.1142/1729
- Hedayatian, S., Bidabad, B., Conformal vector fields on tangent bundle of a Riemannian manifold, Iran. J. Sci. Technol, Trans. A, Sci. 29 (2005), 531-539. (2005) Zbl1106.53012MR2239754
- Kolář, I., Michor, P. W., Slovák, J., 10.1007/978-3-662-02950-3, Springer, Berlin (1993). (1993) Zbl0782.53013MR1202431DOI10.1007/978-3-662-02950-3
- Konno, T., 10.2996/kmj/1138043835, Kodai Math. J. 21 (1998), 61-72. (1998) Zbl0907.53033MR1625061DOI10.2996/kmj/1138043835
- Konno, T., 10.32917/hmj/1323700039, Hiroshima Math. J. 41 (2011), 343-366. (2011) Zbl1235.53051MR2895285DOI10.32917/hmj/1323700039
- Kowalski, O., Sekizawa, M., Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles - a classification, Bull. Tokyo Gakugei Univ., Sect. IV, Ser. Math. Nat. Sci. 40 (1988), 1-29. (1988) Zbl0656.53021MR0974641
- Peyghan, E., Heydari, A., 10.1016/j.jmaa.2008.05.092, J. Math. Anal. Appl. 347 (2008), 136-142. (2008) Zbl1145.53028MR2433831DOI10.1016/j.jmaa.2008.05.092
- Sasaki, S., 10.2748/tmj/1178244668, Tohoku Math. J., II. Ser. 10 (1958), 338-354. (1958) Zbl0086.15003MR0112152DOI10.2748/tmj/1178244668
- Sasaki, S., 10.2748/tmj/1178244169, Tohoku Math. J., II. Ser. 14 (1962), 146-155. (1962) Zbl0109.40505MR0145456DOI10.2748/tmj/1178244169
- Şimşir, F. M., Tezer, C., 10.1007/s00022-005-0033-x, J. Geom. 84 (2005), 133-151. (2005) Zbl1093.53022MR2215371DOI10.1007/s00022-005-0033-x
- Tanno, S., 10.1515/crll.1976.282.162, J. Reine Angew. Math. 282 (1976), 162-171. (1976) Zbl0317.53042MR0405285DOI10.1515/crll.1976.282.162
- Wood, C. M., 10.1007/BF02568751, Manuscr. Math. 68 (1990), 69-75. (1990) Zbl0713.58010MR1057077DOI10.1007/BF02568751
- Yano, K., Kobayashi, S., 10.2969/jmsj/01820194, J. Math. Soc. Japan 18 (1966), 194-210. (1966) Zbl0141.38702MR0193596DOI10.2969/jmsj/01820194
- Yano, K., Kobayashi, S., 10.2969/jmsj/01830236, J. Math. Soc. Japan 18 (1966), 236-246. (1966) Zbl0147.21501MR0200857DOI10.2969/jmsj/01830236
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.