Translation surfaces of finite type in
Bendehiba Senoussi; Hassan Al-Zoubi
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 2, page 237-256
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSenoussi, Bendehiba, and Al-Zoubi, Hassan. "Translation surfaces of finite type in ${\rm Sol}_{3}$." Commentationes Mathematicae Universitatis Carolinae 61.2 (2020): 237-256. <http://eudml.org/doc/297392>.
@article{Senoussi2020,
abstract = {In the homogeneous space Sol$_\{3\}$, a translation surface is parametrized by $r(s,t)=\gamma _\{1\}(s)\ast \gamma _\{2\}(t)$, where $\gamma _\{1\}$ and $\gamma _\{2\}$ are curves contained in coordinate planes. In this article, we study translation invariant surfaces in $\{\rm Sol\}_\{3\}$, which has finite type immersion.},
author = {Senoussi, Bendehiba, Al-Zoubi, Hassan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Laplacian operator; homogeneous space; invariant surface; surfaces of coordinate finite type},
language = {eng},
number = {2},
pages = {237-256},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Translation surfaces of finite type in $\{\rm Sol\}_\{3\}$},
url = {http://eudml.org/doc/297392},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Senoussi, Bendehiba
AU - Al-Zoubi, Hassan
TI - Translation surfaces of finite type in ${\rm Sol}_{3}$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 2
SP - 237
EP - 256
AB - In the homogeneous space Sol$_{3}$, a translation surface is parametrized by $r(s,t)=\gamma _{1}(s)\ast \gamma _{2}(t)$, where $\gamma _{1}$ and $\gamma _{2}$ are curves contained in coordinate planes. In this article, we study translation invariant surfaces in ${\rm Sol}_{3}$, which has finite type immersion.
LA - eng
KW - Laplacian operator; homogeneous space; invariant surface; surfaces of coordinate finite type
UR - http://eudml.org/doc/297392
ER -
References
top- Al-Zoubi H., Stamatakis S., Al-Mashaleh W., Awadallah M., Translation surfaces of coordinate finite type, Indian J. Math. 59 (2017), no. 2, 227–241. MR3700538
- Bekkar M., Senoussi B., 10.1007/s00022-012-0136-0, J. Geom. 103 (2012), no. 3, 367–374. MR3017050DOI10.1007/s00022-012-0136-0
- Chen B.-Y., Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, 1, World Scientific Publishing, Singapore, 1984. Zbl0537.53049MR0749575
- Dillen F., Verstraelen L., Zafindratafa G., A generalization of the translation surfaces of Scherk, Differential Geometry in honor of Radu Rosca. K. U. L. (1991), 107–109.
- Inoguchi J., López R., Munteanu M.-I., 10.1007/s10711-012-9702-8, Geom. Dedicata 161 (2012), 221–231. MR2994039DOI10.1007/s10711-012-9702-8
- López R., Munteanu M. I., 10.2206/kyushujm.65.237, Kyushu J. Math. 65 (2011), no. 2, 237–249. MR2977760DOI10.2206/kyushujm.65.237
- López R., Munteanu M. I., 10.2969/jmsj/06430985, J. Math. Soc. Japan. 64 (2012), no. 3, 985–1003. MR2965436DOI10.2969/jmsj/06430985
- Scott P., 10.1112/blms/15.5.401, Bull. London Math. Soc. 15 (1983), no. 5, 401–487. Zbl0662.57001MR0705527DOI10.1112/blms/15.5.401
- Takahashi T., 10.2969/jmsj/01840380, J. Math. Soc. Japan 18 (1966), 380–385. MR0198393DOI10.2969/jmsj/01840380
- Troyanov M., L’horizon de , Exposition. Math. 16 (1998), no. 5, 441–479. MR1656902
- Yoon D. W., Coordinate finite type invariant surfaces in spaces, Bull. Iranian Math. Soc. 43 (2017), no. 3, 649–658. MR3670886
- Yoon D. W., Lee C. W., Karacan M. K., 10.4134/BKMS.2013.50.4.1329, Bull. Korean Math. Soc. 50 (2013), no. 4, 1329–1343. MR3092394DOI10.4134/BKMS.2013.50.4.1329
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.