One-sided Gorenstein subcategories

Weiling Song; Tiwei Zhao; Zhaoyong Huang

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 2, page 483-504
  • ISSN: 0011-4642

Abstract

top
We introduce the right (left) Gorenstein subcategory relative to an additive subcategory 𝒞 of an abelian category 𝒜 , and prove that the right Gorenstein subcategory r 𝒢 ( 𝒞 ) is closed under extensions, kernels of epimorphisms, direct summands and finite direct sums. When 𝒞 is self-orthogonal, we give a characterization for objects in r 𝒢 ( 𝒞 ) , and prove that any object in 𝒜 with finite r 𝒢 ( 𝒞 ) -projective dimension is isomorphic to a kernel (or a cokernel) of a morphism from an object in 𝒜 with finite 𝒞 -projective dimension to an object in r 𝒢 ( 𝒞 ) . As an application, we obtain a weak Auslander-Buchweitz context related to the kernel of a hereditary cotorsion pair in 𝒜 having enough injectives.

How to cite

top

Song, Weiling, Zhao, Tiwei, and Huang, Zhaoyong. "One-sided Gorenstein subcategories." Czechoslovak Mathematical Journal 70.2 (2020): 483-504. <http://eudml.org/doc/297412>.

@article{Song2020,
abstract = {We introduce the right (left) Gorenstein subcategory relative to an additive subcategory $\mathcal \{C\}$ of an abelian category $\mathcal \{A\}$, and prove that the right Gorenstein subcategory $r\mathcal \{G\}(\mathcal \{C\})$ is closed under extensions, kernels of epimorphisms, direct summands and finite direct sums. When $\mathcal \{C\}$ is self-orthogonal, we give a characterization for objects in $r\mathcal \{G\}(\mathcal \{C\})$, and prove that any object in $\mathcal \{A\}$ with finite $r\mathcal \{G\}(\mathcal \{C\})$-projective dimension is isomorphic to a kernel (or a cokernel) of a morphism from an object in $\mathcal \{A\}$ with finite $\mathcal \{C\}$-projective dimension to an object in $r\mathcal \{G\}(\mathcal \{C\})$. As an application, we obtain a weak Auslander-Buchweitz context related to the kernel of a hereditary cotorsion pair in $\mathcal \{A\}$ having enough injectives.},
author = {Song, Weiling, Zhao, Tiwei, Huang, Zhaoyong},
journal = {Czechoslovak Mathematical Journal},
keywords = {right Gorenstein subcategory; self-orthogonal subcategory; relative projective dimension; cotorsion pair; kernel; (weak) Auslander-Buchweitz context},
language = {eng},
number = {2},
pages = {483-504},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {One-sided Gorenstein subcategories},
url = {http://eudml.org/doc/297412},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Song, Weiling
AU - Zhao, Tiwei
AU - Huang, Zhaoyong
TI - One-sided Gorenstein subcategories
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 483
EP - 504
AB - We introduce the right (left) Gorenstein subcategory relative to an additive subcategory $\mathcal {C}$ of an abelian category $\mathcal {A}$, and prove that the right Gorenstein subcategory $r\mathcal {G}(\mathcal {C})$ is closed under extensions, kernels of epimorphisms, direct summands and finite direct sums. When $\mathcal {C}$ is self-orthogonal, we give a characterization for objects in $r\mathcal {G}(\mathcal {C})$, and prove that any object in $\mathcal {A}$ with finite $r\mathcal {G}(\mathcal {C})$-projective dimension is isomorphic to a kernel (or a cokernel) of a morphism from an object in $\mathcal {A}$ with finite $\mathcal {C}$-projective dimension to an object in $r\mathcal {G}(\mathcal {C})$. As an application, we obtain a weak Auslander-Buchweitz context related to the kernel of a hereditary cotorsion pair in $\mathcal {A}$ having enough injectives.
LA - eng
KW - right Gorenstein subcategory; self-orthogonal subcategory; relative projective dimension; cotorsion pair; kernel; (weak) Auslander-Buchweitz context
UR - http://eudml.org/doc/297412
ER -

References

top
  1. Assem, I., Simson, D., Skowroński, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
  2. Auslander, M., Bridger, M., 10.1090/memo/0094, Mem. Am. Math. Soc. 94 (1969), 146 pages. (1969) Zbl0204.36402MR0269685DOI10.1090/memo/0094
  3. Auslander, M., Buchweitz, R.-O., 10.24033/msmf.339, Mém. Soc. Math. Fr., Nouv. Sér. 38 (1989), 5-37. (1989) Zbl0697.13005MR1044344DOI10.24033/msmf.339
  4. Avramov, L. L., Martsinkovsky, A., 10.1112/S0024611502013527, Proc. Lond. Math. Soc., III. Ser. 85 (2002), 393-440. (2002) Zbl1047.16002MR1912056DOI10.1112/S0024611502013527
  5. Cartan, H., Eilenberg, S., 10.1515/9781400883844, Princeton Landmarks in Mathematics, Princeton University Press, Princeton (1999). (1999) Zbl0933.18001MR1731415DOI10.1515/9781400883844
  6. Christensen, L. W., 10.1007/BFb0103980, Lecture Notes in Mathematics 1747, Springer, Berlin (2000). (2000) Zbl0965.13010MR1799866DOI10.1007/BFb0103980
  7. Christensen, L. W., Foxby, H.-B., Holm, H., 10.1007/978-1-4419-6990-3_5, Commutative Algebra: Noetherian and Non-Noetherian Perspectives M. Fontana et al. Springer, New York (2011), 101-143. (2011) Zbl1225.13019MR2762509DOI10.1007/978-1-4419-6990-3_5
  8. Christensen, L. W., Frankild, A., Holm, H., 10.1016/j.jalgebra.2005.12.007, J. Algebra 302 (2006), 231-279. (2006) Zbl1104.13008MR2236602DOI10.1016/j.jalgebra.2005.12.007
  9. Christensen, L. W., Iyengar, S., 10.1016/j.jpaa.2005.12.005, J. Pure Appl. Algebra 208 (2007), 177-188. (2007) Zbl1105.13014MR2269838DOI10.1016/j.jpaa.2005.12.005
  10. Enochs, E. E., Jenda, O. M. G., 10.1007/BF02572634, Math. Z. 220 (1995), 611-633. (1995) Zbl0845.16005MR1363858DOI10.1007/BF02572634
  11. Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, de Gruyter Expositions in Mathematics 30, de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR2857612DOI10.1515/9783110803662
  12. Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A., 10.1080/00927870500328766, Commun. Algebra 33 (2005), 4705-4717. (2005) Zbl1087.16002MR2188336DOI10.1080/00927870500328766
  13. Enochs, E. E., Oyonarte, L., Covers, Envelopes and Cotorsion Theories, Nova Science Publishers, New York (2002). (2002) 
  14. Geng, Y., Ding, N., 10.1016/j.jalgebra.2010.09.040, J. Algebra 325 (2011), 132-146. (2011) Zbl1216.18015MR2745532DOI10.1016/j.jalgebra.2010.09.040
  15. Hashimoto, M., 10.1017/CBO9780511565762, London Mathematical Society Lecture Note Series 282, Cambridge University Press, Cambridge (2000). (2000) Zbl0993.13007MR1797672DOI10.1017/CBO9780511565762
  16. Holm, H., 10.1016/j.jpaa.2003.11.007, J. Pure Appl. Algebra 189 (2004), 167-193. (2004) Zbl1050.16003MR2038564DOI10.1016/j.jpaa.2003.11.007
  17. Huang, Z., 10.1016/j.jalgebra.2013.07.008, J. Algebra 393 (2013), 142-169. (2013) Zbl1291.18022MR3090064DOI10.1016/j.jalgebra.2013.07.008
  18. Liu, Z., Huang, Z., Xu, A., 10.1080/00927872.2011.602782, Commun. Algebra 41 (2013), 1-18. (2013) Zbl1287.16015MR3010518DOI10.1080/00927872.2011.602782
  19. Rotman, J. J., 10.1007/b98977, Universitext, Springer, New York (2009). (2009) Zbl1157.18001MR2455920DOI10.1007/b98977
  20. Sather-Wagstaff, S., Sharif, T., White, D., 10.1112/jlms/jdm124, J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. (2008) Zbl1140.18010MR2400403DOI10.1112/jlms/jdm124
  21. Tang, X., Huang, Z., 10.1515/forum-2013-0196, Forum Math. 27 (2015), 3717-3743. (2015) Zbl1405.16004MR3420357DOI10.1515/forum-2013-0196
  22. Tang, X., Huang, Z., 10.4064/cm7121-12-2016, Colloq. Math. 150 (2017), 293-311. (2017) Zbl1397.18032MR3719463DOI10.4064/cm7121-12-2016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.