One-sided Gorenstein subcategories
Weiling Song; Tiwei Zhao; Zhaoyong Huang
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 2, page 483-504
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSong, Weiling, Zhao, Tiwei, and Huang, Zhaoyong. "One-sided Gorenstein subcategories." Czechoslovak Mathematical Journal 70.2 (2020): 483-504. <http://eudml.org/doc/297412>.
@article{Song2020,
abstract = {We introduce the right (left) Gorenstein subcategory relative to an additive subcategory $\mathcal \{C\}$ of an abelian category $\mathcal \{A\}$, and prove that the right Gorenstein subcategory $r\mathcal \{G\}(\mathcal \{C\})$ is closed under extensions, kernels of epimorphisms, direct summands and finite direct sums. When $\mathcal \{C\}$ is self-orthogonal, we give a characterization for objects in $r\mathcal \{G\}(\mathcal \{C\})$, and prove that any object in $\mathcal \{A\}$ with finite $r\mathcal \{G\}(\mathcal \{C\})$-projective dimension is isomorphic to a kernel (or a cokernel) of a morphism from an object in $\mathcal \{A\}$ with finite $\mathcal \{C\}$-projective dimension to an object in $r\mathcal \{G\}(\mathcal \{C\})$. As an application, we obtain a weak Auslander-Buchweitz context related to the kernel of a hereditary cotorsion pair in $\mathcal \{A\}$ having enough injectives.},
author = {Song, Weiling, Zhao, Tiwei, Huang, Zhaoyong},
journal = {Czechoslovak Mathematical Journal},
keywords = {right Gorenstein subcategory; self-orthogonal subcategory; relative projective dimension; cotorsion pair; kernel; (weak) Auslander-Buchweitz context},
language = {eng},
number = {2},
pages = {483-504},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {One-sided Gorenstein subcategories},
url = {http://eudml.org/doc/297412},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Song, Weiling
AU - Zhao, Tiwei
AU - Huang, Zhaoyong
TI - One-sided Gorenstein subcategories
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 483
EP - 504
AB - We introduce the right (left) Gorenstein subcategory relative to an additive subcategory $\mathcal {C}$ of an abelian category $\mathcal {A}$, and prove that the right Gorenstein subcategory $r\mathcal {G}(\mathcal {C})$ is closed under extensions, kernels of epimorphisms, direct summands and finite direct sums. When $\mathcal {C}$ is self-orthogonal, we give a characterization for objects in $r\mathcal {G}(\mathcal {C})$, and prove that any object in $\mathcal {A}$ with finite $r\mathcal {G}(\mathcal {C})$-projective dimension is isomorphic to a kernel (or a cokernel) of a morphism from an object in $\mathcal {A}$ with finite $\mathcal {C}$-projective dimension to an object in $r\mathcal {G}(\mathcal {C})$. As an application, we obtain a weak Auslander-Buchweitz context related to the kernel of a hereditary cotorsion pair in $\mathcal {A}$ having enough injectives.
LA - eng
KW - right Gorenstein subcategory; self-orthogonal subcategory; relative projective dimension; cotorsion pair; kernel; (weak) Auslander-Buchweitz context
UR - http://eudml.org/doc/297412
ER -
References
top- Assem, I., Simson, D., Skowroński, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
- Auslander, M., Bridger, M., 10.1090/memo/0094, Mem. Am. Math. Soc. 94 (1969), 146 pages. (1969) Zbl0204.36402MR0269685DOI10.1090/memo/0094
- Auslander, M., Buchweitz, R.-O., 10.24033/msmf.339, Mém. Soc. Math. Fr., Nouv. Sér. 38 (1989), 5-37. (1989) Zbl0697.13005MR1044344DOI10.24033/msmf.339
- Avramov, L. L., Martsinkovsky, A., 10.1112/S0024611502013527, Proc. Lond. Math. Soc., III. Ser. 85 (2002), 393-440. (2002) Zbl1047.16002MR1912056DOI10.1112/S0024611502013527
- Cartan, H., Eilenberg, S., 10.1515/9781400883844, Princeton Landmarks in Mathematics, Princeton University Press, Princeton (1999). (1999) Zbl0933.18001MR1731415DOI10.1515/9781400883844
- Christensen, L. W., 10.1007/BFb0103980, Lecture Notes in Mathematics 1747, Springer, Berlin (2000). (2000) Zbl0965.13010MR1799866DOI10.1007/BFb0103980
- Christensen, L. W., Foxby, H.-B., Holm, H., 10.1007/978-1-4419-6990-3_5, Commutative Algebra: Noetherian and Non-Noetherian Perspectives M. Fontana et al. Springer, New York (2011), 101-143. (2011) Zbl1225.13019MR2762509DOI10.1007/978-1-4419-6990-3_5
- Christensen, L. W., Frankild, A., Holm, H., 10.1016/j.jalgebra.2005.12.007, J. Algebra 302 (2006), 231-279. (2006) Zbl1104.13008MR2236602DOI10.1016/j.jalgebra.2005.12.007
- Christensen, L. W., Iyengar, S., 10.1016/j.jpaa.2005.12.005, J. Pure Appl. Algebra 208 (2007), 177-188. (2007) Zbl1105.13014MR2269838DOI10.1016/j.jpaa.2005.12.005
- Enochs, E. E., Jenda, O. M. G., 10.1007/BF02572634, Math. Z. 220 (1995), 611-633. (1995) Zbl0845.16005MR1363858DOI10.1007/BF02572634
- Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, de Gruyter Expositions in Mathematics 30, de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR2857612DOI10.1515/9783110803662
- Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A., 10.1080/00927870500328766, Commun. Algebra 33 (2005), 4705-4717. (2005) Zbl1087.16002MR2188336DOI10.1080/00927870500328766
- Enochs, E. E., Oyonarte, L., Covers, Envelopes and Cotorsion Theories, Nova Science Publishers, New York (2002). (2002)
- Geng, Y., Ding, N., 10.1016/j.jalgebra.2010.09.040, J. Algebra 325 (2011), 132-146. (2011) Zbl1216.18015MR2745532DOI10.1016/j.jalgebra.2010.09.040
- Hashimoto, M., 10.1017/CBO9780511565762, London Mathematical Society Lecture Note Series 282, Cambridge University Press, Cambridge (2000). (2000) Zbl0993.13007MR1797672DOI10.1017/CBO9780511565762
- Holm, H., 10.1016/j.jpaa.2003.11.007, J. Pure Appl. Algebra 189 (2004), 167-193. (2004) Zbl1050.16003MR2038564DOI10.1016/j.jpaa.2003.11.007
- Huang, Z., 10.1016/j.jalgebra.2013.07.008, J. Algebra 393 (2013), 142-169. (2013) Zbl1291.18022MR3090064DOI10.1016/j.jalgebra.2013.07.008
- Liu, Z., Huang, Z., Xu, A., 10.1080/00927872.2011.602782, Commun. Algebra 41 (2013), 1-18. (2013) Zbl1287.16015MR3010518DOI10.1080/00927872.2011.602782
- Rotman, J. J., 10.1007/b98977, Universitext, Springer, New York (2009). (2009) Zbl1157.18001MR2455920DOI10.1007/b98977
- Sather-Wagstaff, S., Sharif, T., White, D., 10.1112/jlms/jdm124, J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. (2008) Zbl1140.18010MR2400403DOI10.1112/jlms/jdm124
- Tang, X., Huang, Z., 10.1515/forum-2013-0196, Forum Math. 27 (2015), 3717-3743. (2015) Zbl1405.16004MR3420357DOI10.1515/forum-2013-0196
- Tang, X., Huang, Z., 10.4064/cm7121-12-2016, Colloq. Math. 150 (2017), 293-311. (2017) Zbl1397.18032MR3719463DOI10.4064/cm7121-12-2016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.