Continuous dependence of 2D large scale primitive equations on the boundary conditions in oceanic dynamics
Applications of Mathematics (2022)
- Volume: 67, Issue: 1, page 103-124
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLi, Yuanfei, and Xiao, Shengzhong. "Continuous dependence of 2D large scale primitive equations on the boundary conditions in oceanic dynamics." Applications of Mathematics 67.1 (2022): 103-124. <http://eudml.org/doc/297418>.
@article{Li2022,
abstract = {In this paper, we consider an initial boundary value problem for the two-dimensional primitive equations of large scale oceanic dynamics. Assuming that the depth of the ocean is a positive constant, we establish rigorous a priori bounds of the solution to problem. With the aid of these a priori bounds, the continuous dependence of the solution on changes in the boundary terms is obtained.},
author = {Li, Yuanfei, Xiao, Shengzhong},
journal = {Applications of Mathematics},
keywords = {a priori bounds; primitive equation; continuous dependence},
language = {eng},
number = {1},
pages = {103-124},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Continuous dependence of 2D large scale primitive equations on the boundary conditions in oceanic dynamics},
url = {http://eudml.org/doc/297418},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Li, Yuanfei
AU - Xiao, Shengzhong
TI - Continuous dependence of 2D large scale primitive equations on the boundary conditions in oceanic dynamics
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 103
EP - 124
AB - In this paper, we consider an initial boundary value problem for the two-dimensional primitive equations of large scale oceanic dynamics. Assuming that the depth of the ocean is a positive constant, we establish rigorous a priori bounds of the solution to problem. With the aid of these a priori bounds, the continuous dependence of the solution on changes in the boundary terms is obtained.
LA - eng
KW - a priori bounds; primitive equation; continuous dependence
UR - http://eudml.org/doc/297418
ER -
References
top- Chen, W., 10.4310/CMS.2020.v18.n2.a7, Commun. Math. Sci. 18 (2020), 429-457. (2020) Zbl07327456MR4101316DOI10.4310/CMS.2020.v18.n2.a7
- Chen, W., 10.1016/j.na.2020.112160, Nonlinear Anal., Theory Methods Appl., Ser. A 202 (2021), Article ID 112160, 23 pages. (2021) Zbl1450.35172MR4156977DOI10.1016/j.na.2020.112160
- Chen, W., Dao, T. A., 10.1016/j.nonrwa.2020.103265, Nonlinear Anal., Real World Appl. 59 (2021), Article ID 103265, 26 pages. (2021) Zbl07347902MR4177989DOI10.1016/j.nonrwa.2020.103265
- Chiodaroli, E., Michálek, M., 10.1007/s00220-017-2846-5, Commun. Math. Phys. 353 (2017), 1201-1216. (2017) Zbl1373.35238MR3652488DOI10.1007/s00220-017-2846-5
- Fang, D., Han, B., 10.1016/j.jmaa.2019.123714, J. Math. Anal. Appl. 484 (2020), Article ID 123714, 22 pages. (2020) Zbl1433.35268MR4039433DOI10.1016/j.jmaa.2019.123714
- Hameed, A. A., Harfash, A. J., Continuous dependence of double diffusive convection in a porous medium with temperature-dependent density, Basrah J. Sci. 37 (2019), 1-15. (2019) MR4241308
- Hardy, C. H., Littlewood, J. E., Pólya, G., Inequalities, Cambridge University Press, Cambridge (1952). (1952) Zbl0047.05302MR0046395
- Hieber, M., Hussein, A., Kashiwabara, T., 10.1016/j.jde.2016.09.010, J. Differ. Equations 261 (2016), 6950-6981. (2016) Zbl1351.35139MR3562316DOI10.1016/j.jde.2016.09.010
- Huang, D.-W., Guo, B.-L., 10.1007/s10483-007-0503-x, Appl. Math. Mech., Engl. Ed. 28 (2007), 581-592. (2007) Zbl1231.35264MR2325168DOI10.1007/s10483-007-0503-x
- Huang, D.-W., Guo, B.-L., 10.1007/s10483-007-0504-x, Appl. Math. Mech., Engl. Ed. 28 (2007), 593-600. (2007) Zbl1231.35265MR2325169DOI10.1007/s10483-007-0504-x
- Huang, D., Shen, T., Zheng, Y., 10.1016/j.aml.2019.106146, Appl. Math. Lett. 102 (2020), Article ID 106146, 8 pages. (2020) Zbl1441.60046MR4037702DOI10.1016/j.aml.2019.106146
- Jiu, Q., Li, M., Wang, F., 10.1016/j.jmaa.2017.12.035, J. Math. Anal. Appl. 461 (2018), 1653-1671. (2018) Zbl1406.35281MR3765508DOI10.1016/j.jmaa.2017.12.035
- Li, Y., 10.13413/j.cnki.jdxblxb.2019038, J. Jilin Univ., Sci. 57 (2019), 1053-1059 Chinese. (2019) Zbl1449.35036MR3970526DOI10.13413/j.cnki.jdxblxb.2019038
- Li, Y., 10.6040/j.issn.1671-9352.0.2019.539, J. Shandong Univ., Nat. Sci. 54 (2019), 12-23 Chinese. (2019) Zbl1449.35037MR4114791DOI10.6040/j.issn.1671-9352.0.2019.539
- Li, Y., Lin, C., 10.1016/j.amc.2014.06.082, Appl. Math. Comput. 244 (2014), 201-208. (2014) Zbl1335.35198MR3250570DOI10.1016/j.amc.2014.06.082
- Lions, J. L., Temam, R., Wang, S., 10.1088/0951-7715/5/2/001, Nonlinearity 5 (1992), 237-288. (1992) Zbl0746.76019MR1158375DOI10.1088/0951-7715/5/2/001
- Lions, J. L., Temam, R., Wang, S., 10.1088/0951-7715/5/5/002, Nonlinearity 5 (1992), 1007-1053. (1992) Zbl0766.35039MR1187737DOI10.1088/0951-7715/5/5/002
- Lions, J. L., Temam, R., Wang, S., Models of the coupled atmosphere and ocean (CAO I), Comput. Mech. Adv. 1 (1993), 5-54. (1993) Zbl0805.76011MR1252502
- Lions, J. L., Temam, R., Wang, S., Mathematical theory for the coupled atmosphere-ocean models (CAO III), J. Math. Pures Appl., IX. Sér. 74 (1995), 105-163. (1995) Zbl0866.76025MR1325825
- Liu, Y., 10.1016/j.amc.2017.03.004, Appl. Math. Comput. 308 (2017), 18-30. (2017) Zbl1411.35228MR3638153DOI10.1016/j.amc.2017.03.004
- Liu, Y., Xiao, S., Lin, Y., 10.1016/j.matcom.2018.02.009, Math. Comput. Simul. 150 (2018), 66-82. (2018) Zbl07316235MR3783079DOI10.1016/j.matcom.2018.02.009
- Mitrinović, D. S., 10.1007/978-3-642-99970-3, Die Grundlehren der mathematischen Wissenschaften 165. Springer, Berlin (1970). (1970) MR0274686DOI10.1007/978-3-642-99970-3
- Petcu, M., Temam, R., Wirosoetisno, D., 10.3934/cpaa.2004.3.115, Commun. Pure Appl. Anal. 3 (2004), 115-131. (2004) Zbl1060.35033MR2033944DOI10.3934/cpaa.2004.3.115
- Scott, N. L., Straughan, B., 10.1090/S0033-569X-2013-01289-X, Q. Appl. Math. 71 (2013), 501-508. (2013) Zbl1275.35022MR3112825DOI10.1090/S0033-569X-2013-01289-X
- Sun, J., Cui, S., 10.1016/j.nonrwa.2019.02.003, Nonlinear Anal., Real World Appl. 48 (2019), 445-465. (2019) Zbl1453.35152MR3915400DOI10.1016/j.nonrwa.2019.02.003
- Sun, J., Yang, M., 10.1186/s13661-016-0526-6, Bound. Value Probl. 2016 (2016), Article ID 21, 16 pages. (2016) Zbl1330.35349MR3451597DOI10.1186/s13661-016-0526-6
- You, B., Li, F., 10.1007/s00033-018-1007-9, Z. Angew. Math. Phys. 69 (2018), Article ID 114, 13 pages. (2018) Zbl1400.35037MR3846299DOI10.1007/s00033-018-1007-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.