Displaying similar documents to “Continuous dependence of 2D large scale primitive equations on the boundary conditions in oceanic dynamics”

Numerical approximation of the inviscid 3D primitive equations in a limited domain

Qingshan Chen, Ming-Cheng Shiue, Roger Temam, Joseph Tribbia (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.

Numerical approximation of the inviscid 3D primitive equations in a limited domain

Qingshan Chen, Ming-Cheng Shiue, Roger Temam, Joseph Tribbia (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.

Systems of differential inclusions in the absence of maximum principles and growth conditions

Christopher C. Tisdell (2006)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

This article investigates the existence of solutions to second-order boundary value problems (BVPs) for systems of ordinary differential inclusions. The boundary conditions may involve two or more points. Some new inequalities are presented that guarantee a priori bounds on solutions to the differential inclusion under consideration. These a priori bound results are then applied, in conjunction with appropriate topological methods, to prove some new existence theorems for solutions to...

Generalization of a theorem of Steinhaus

C. Cobeli, G. Groza, M. Vâjâitu, A. Zaharescu (2002)

Colloquium Mathematicae

Similarity:

We present a multidimensional version of the Three Gap Theorem of Steinhaus, proving that the number of the so-called primitive arcs is bounded in any dimension.