Application of very weak formulation on homogenization of boundary value problems in porous media
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 4, page 975-989
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMarušić-Paloka, Eduard. "Application of very weak formulation on homogenization of boundary value problems in porous media." Czechoslovak Mathematical Journal 71.4 (2021): 975-989. <http://eudml.org/doc/297472>.
@article{Marušić2021,
abstract = {The goal of this paper is to present a different approach to the homogenization of the Dirichlet boundary value problem in porous medium. Unlike the standard energy method or the method of two-scale convergence, this approach is not based on the weak formulation of the problem but on the very weak formulation. To illustrate the method and its advantages we treat the stationary, incompressible Navier-Stokes system with the non-homogeneous Dirichlet boundary condition in periodic porous medium. The nonzero velocity trace on the boundary of a solid inclusion yields a non-standard addition to the source term in the Darcy law. In addition, the homogenized model is not incompressible.},
author = {Marušić-Paloka, Eduard},
journal = {Czechoslovak Mathematical Journal},
keywords = {homogenization; porous medium; Navier-Stokes system; very weak formulation},
language = {eng},
number = {4},
pages = {975-989},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Application of very weak formulation on homogenization of boundary value problems in porous media},
url = {http://eudml.org/doc/297472},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Marušić-Paloka, Eduard
TI - Application of very weak formulation on homogenization of boundary value problems in porous media
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 975
EP - 989
AB - The goal of this paper is to present a different approach to the homogenization of the Dirichlet boundary value problem in porous medium. Unlike the standard energy method or the method of two-scale convergence, this approach is not based on the weak formulation of the problem but on the very weak formulation. To illustrate the method and its advantages we treat the stationary, incompressible Navier-Stokes system with the non-homogeneous Dirichlet boundary condition in periodic porous medium. The nonzero velocity trace on the boundary of a solid inclusion yields a non-standard addition to the source term in the Darcy law. In addition, the homogenized model is not incompressible.
LA - eng
KW - homogenization; porous medium; Navier-Stokes system; very weak formulation
UR - http://eudml.org/doc/297472
ER -
References
top- Allaire, G., 10.1007/BF00375065, Arch. Ration. Mech. Anal. 113 (1991), 209-259. (1991) Zbl0724.76020MR1079189DOI10.1007/BF00375065
- Allaire, G., 10.1137/0523084, SIAM J. Math. Anal. 23 (1992), 1482-1518. (1992) Zbl0770.35005MR1185639DOI10.1137/0523084
- Bakhvalov, N. S., Panasenko, G., 10.1007/978-94-009-2247-1, Mathematics and Its Applications: Soviet Series 36. Kluwer Academic, Dordrecht (1989). (1989) Zbl0692.73012MR1112788DOI10.1007/978-94-009-2247-1
- Capatina, A., Ene, H., 10.1017/S0956792511000088, Eur. J. Appl. Math. 22 (2011), 333-345. (2011) Zbl1227.35045MR2812915DOI10.1017/S0956792511000088
- Cioranescu, D., Donato, P., Ene, H., 10.1002/(SICI)1099-1476(19960725)19:11<857::AID-MMA798>3.0.CO;2-D, Math. Methods Appl. Sci. 19 (1996), 857-881. (1996) Zbl0869.35012MR1399054DOI10.1002/(SICI)1099-1476(19960725)19:11<857::AID-MMA798>3.0.CO;2-D
- Cioranescu, D., Donato, P., Zaki, R., The periodic unfolding method in perforated domains, Port. Math. (N.S.) 63 (2006), 467-496. (2006) Zbl1119.49014MR2287278
- Conca, C., Étude d'un fluide traversant une paroi perforée. I. Comportement limite près de la paroi, J. Math. Pures Appl., IX. Sér. French 66 (1987), 1-43. (1987) Zbl0622.35061MR0884812
- Conca, C., Étude d'un fluide traversant une paroi perforée. II. Comportement limite loin de la paroi, J. Math. Pures Appl., IX. Sér. French 66 (1987), 45-69. (1987) Zbl0622.35062MR0884813
- Craig, A. E., Dabiri, J. O., Koseff, J. R., 10.1115/1.4032600, J. Fluids Eng. 138 (2016), Article ID 070906, 16 pages. (2016) DOI10.1115/1.4032600
- Diening, L., Feireisl, E., Lu, Y., 10.1051/cocv/2016016, ESAIM, Control Optim. Calc. Var. 23 (2017), 851-868. (2017) Zbl1375.35026MR3660451DOI10.1051/cocv/2016016
- Lipton, R., Avellaneda, M., 10.1017/S0308210500024276, Proc. R. Soc. Edinb., Sect. A 114 (1990), 71-79. (1990) Zbl0850.76778MR1051608DOI10.1017/S0308210500024276
- Marušić-Paloka, E., 10.1007/s002459911018, Appl. Math. Optimization 41 (2000), 365-375. (2000) Zbl0952.35090MR1739399DOI10.1007/s002459911018
- Marušić-Paloka, E., Mikelić, A., 10.1016/S0362-546X(98)00346-0, Nonlinear Anal., Theory Methods Appl., Ser. A 42 (2000), 97-137. (2000) Zbl0965.35131MR1769255DOI10.1016/S0362-546X(98)00346-0
- Mikelić, A., Aganović, I., Homogenization in a porous media under a nonhomgeneous boundary condition, Boll. Unione Mat. Ital., VII. Ser., A 1 (1987), 171-180. (1987) Zbl0629.76102MR0898276
- Nguetseng, G., 10.1137/0520043, SIAM J. Math. Anal. 20 (1989), 608-623. (1989) Zbl0688.35007MR0990867DOI10.1137/0520043
- Sanchez-Palencia, E., 10.1007/3-540-10000-8, Lecture Notes in Physics 127. Springer, Berlin (1980). (1980) Zbl0432.70002MR0578345DOI10.1007/3-540-10000-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.