Displaying similar documents to “Application of very weak formulation on homogenization of boundary value problems in porous media”

On a steady flow in a three-dimensional infinite pipe

Paweł Konieczny (2006)

Colloquium Mathematicae

Similarity:

The paper examines the steady Navier-Stokes equations in a three-dimensional infinite pipe with mixed boundary conditions (Dirichlet and slip boundary conditions). The velocity of the fluid is assumed to be constant at infinity. The main results show the existence of weak solutions with no restriction on smallness of the flux vector and boundary conditions.

Homogenization of the compressible Navier–Stokes equations in a porous medium

Nader Masmoudi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.

Time-dependent coupling of Navier–Stokes and Darcy flows

Aycil Cesmelioglu, Vivette Girault, Béatrice Rivière (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

A weak solution of the coupling of time-dependent incompressible Navier–Stokes equations with Darcy equations is defined. The interface conditions include the Beavers–Joseph–Saffman condition. Existence and uniqueness of the weak solution are obtained by a constructive approach. The analysis is valid for weak regularity interfaces.

Some Remarks on the Boundary Conditions in the Theory of Navier-Stokes Equations

Chérif Amrouche, Patrick Penel, Nour Seloula (2013)

Annales mathématiques Blaise Pascal

Similarity:

This article addresses some theoretical questions related to the choice of boundary conditions, which are essential for modelling and numerical computing in mathematical fluids mechanics. Unlike the standard choice of the well known non slip boundary conditions, we emphasize three selected sets of slip conditions, and particularly stress on the interaction between the appropriate functional setting and the status of these conditions.