Projectively equivariant quantization and symbol on supercircle S 1 | 3

Taher Bichr

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 4, page 1235-1248
  • ISSN: 0011-4642

Abstract

top
Let 𝒟 λ , μ be the space of linear differential operators on weighted densities from λ to μ as module over the orthosymplectic Lie superalgebra 𝔬𝔰𝔭 ( 3 | 2 ) , where λ , ł is the space of tensor densities of degree λ on the supercircle S 1 | 3 . We prove the existence and uniqueness of projectively equivariant quantization map from the space of symbols to the space of differential operators. An explicite expression of this map is also given.

How to cite

top

Bichr, Taher. "Projectively equivariant quantization and symbol on supercircle $S^{1|3}$." Czechoslovak Mathematical Journal 71.4 (2021): 1235-1248. <http://eudml.org/doc/297481>.

@article{Bichr2021,
abstract = {Let $\mathcal \{D\}_\{\lambda ,\mu \} $ be the space of linear differential operators on weighted densities from $\mathcal \{F\}_\{\lambda \}$ to $\mathcal \{F\}_\{\mu \}$ as module over the orthosymplectic Lie superalgebra $\mathfrak \{osp\}(3|2)$, where $\mathcal \{F\}_\{\lambda \} $, $ł\in \mathbb \{C\}$ is the space of tensor densities of degree $\lambda $ on the supercircle $S^\{1|3\}$. We prove the existence and uniqueness of projectively equivariant quantization map from the space of symbols to the space of differential operators. An explicite expression of this map is also given.},
author = {Bichr, Taher},
journal = {Czechoslovak Mathematical Journal},
keywords = {differential operator; density; equivariant quantization and orthosymplectic algebra},
language = {eng},
number = {4},
pages = {1235-1248},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Projectively equivariant quantization and symbol on supercircle $S^\{1|3\}$},
url = {http://eudml.org/doc/297481},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Bichr, Taher
TI - Projectively equivariant quantization and symbol on supercircle $S^{1|3}$
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 1235
EP - 1248
AB - Let $\mathcal {D}_{\lambda ,\mu } $ be the space of linear differential operators on weighted densities from $\mathcal {F}_{\lambda }$ to $\mathcal {F}_{\mu }$ as module over the orthosymplectic Lie superalgebra $\mathfrak {osp}(3|2)$, where $\mathcal {F}_{\lambda } $, $ł\in \mathbb {C}$ is the space of tensor densities of degree $\lambda $ on the supercircle $S^{1|3}$. We prove the existence and uniqueness of projectively equivariant quantization map from the space of symbols to the space of differential operators. An explicite expression of this map is also given.
LA - eng
KW - differential operator; density; equivariant quantization and orthosymplectic algebra
UR - http://eudml.org/doc/297481
ER -

References

top
  1. Duval, C., Lecomte, P., Ovsienko, V., 10.5802/aif.1744, Ann. Inst. Fourier 49 (1999), 1999-2029. (1999) Zbl0932.53048MR1738073DOI10.5802/aif.1744
  2. Grozman, P., Leites, D., Shchepochkina, I., 10.1142/9789812777065_0031, Multiple Facets of Quantization and Supersymmetry World Scientific, River Edge (2002), 508-555. (2002) Zbl1037.58003MR1964915DOI10.1142/9789812777065_0031
  3. Lecomte, P. B. A., 10.1016/S0764-4442(99)80211-0, C. R. Acad. Sci. Paris., Sér. I, Math. 328 (1999), 287-290 French. (1999) Zbl1017.17022MR1675939DOI10.1016/S0764-4442(99)80211-0
  4. Lecomte, P. B. A., 10.1143/PTPS.144.125, Prog. Theor. Phys., Suppl. 144 (2001), 125-132. (2001) Zbl1012.53069MR2023850DOI10.1143/PTPS.144.125
  5. Lecomte, P. B. A., Ovsienko, V. Y., 10.1023/A:1007662702470, Lett. Math. Phys. 49 (1999), 173-196. (1999) Zbl0989.17015MR1743456DOI10.1023/A:1007662702470
  6. Leites, D. A., Kochetkov, Y., Weintrob, A., New invariant differential operators on supermanifolds and pseudo-(co)homology, General Topology and Applications Lecture Notes in Pure and Applied Mathematics 134. Marcel Dekker, New York (1991), 217-238. (1991) Zbl0773.58004MR1142806
  7. Leuther, T., Mathonet, P., Radoux, F., 10.1016/j.geomphys.2011.09.003, J. Geom. Phys. 62 (2012), 87-99. (2012) Zbl1238.17016MR2854196DOI10.1016/j.geomphys.2011.09.003
  8. Mathonet, P., Radoux, F., 10.1007/s11005-011-0474-0, Lett. Math. Phys. 98 (2011), 311-331. (2011) Zbl1279.53083MR2852986DOI10.1007/s11005-011-0474-0
  9. Mellouli, N., Projectively equivariant quantization and symbol calculus in dimension 1 | 2 , Available at https://arxiv.org/abs/1106.5246v1 (2011), 9 pages. (2011) 
  10. Ovsienko, V. Y., Ovsienko, O. D., Chekanov, Y. V., 10.1070/RM1989v044n03ABEH002135, Russ. Math. Surv. 44 (1989), 212-213. (1989) Zbl0727.58006MR1024056DOI10.1070/RM1989v044n03ABEH002135
  11. Shchepochkina, I., 10.1007/s11232-006-0078-5, Theor. Math. Phys. 147 (2006), 821-838. (2006) Zbl1177.17015MR2254724DOI10.1007/s11232-006-0078-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.