The linear syzygy graph of a monomial ideal and linear resolutions
Erfan Manouchehri; Ali Soleyman Jahan
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 3, page 785-802
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topManouchehri, Erfan, and Soleyman Jahan, Ali. "The linear syzygy graph of a monomial ideal and linear resolutions." Czechoslovak Mathematical Journal 71.3 (2021): 785-802. <http://eudml.org/doc/297484>.
@article{Manouchehri2021,
abstract = {For each squarefree monomial ideal $I\subset S = k[x_\{1\},\ldots , x_\{n\}] $, we associate a simple finite graph $G_I$ by using the first linear syzygies of $I$. The nodes of $G_I$ are the generators of $I$, and two vertices $u_i$ and $u_j$ are adjacent if there exist variables $x, y$ such that $xu_i = yu_j$. In the cases, where $G_I$ is a cycle or a tree, we show that $I$ has a linear resolution if and only if $I$ has linear quotients and if and only if $ I $ is variable-decomposable. In addition, with the same assumption on $G_I$, we characterize all squarefree monomial ideals with a linear resolution. Using our results, we characterize all Cohen-Macaulay codimension $2$ monomial ideals with a linear resolution. As another application of our results, we also characterize all Cohen-Macaulay simplicial complexes in the case, where $G_\{\Delta \}\cong G_\{I_\{\Delta ^\{\vee \}\}\}$ is a cycle or a tree.},
author = {Manouchehri, Erfan, Soleyman Jahan, Ali},
journal = {Czechoslovak Mathematical Journal},
keywords = {monomial ideal; linear resolution; linear quotient; variable-decomposability; Cohen-Macaulay simplicial complex},
language = {eng},
number = {3},
pages = {785-802},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The linear syzygy graph of a monomial ideal and linear resolutions},
url = {http://eudml.org/doc/297484},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Manouchehri, Erfan
AU - Soleyman Jahan, Ali
TI - The linear syzygy graph of a monomial ideal and linear resolutions
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 3
SP - 785
EP - 802
AB - For each squarefree monomial ideal $I\subset S = k[x_{1},\ldots , x_{n}] $, we associate a simple finite graph $G_I$ by using the first linear syzygies of $I$. The nodes of $G_I$ are the generators of $I$, and two vertices $u_i$ and $u_j$ are adjacent if there exist variables $x, y$ such that $xu_i = yu_j$. In the cases, where $G_I$ is a cycle or a tree, we show that $I$ has a linear resolution if and only if $I$ has linear quotients and if and only if $ I $ is variable-decomposable. In addition, with the same assumption on $G_I$, we characterize all squarefree monomial ideals with a linear resolution. Using our results, we characterize all Cohen-Macaulay codimension $2$ monomial ideals with a linear resolution. As another application of our results, we also characterize all Cohen-Macaulay simplicial complexes in the case, where $G_{\Delta }\cong G_{I_{\Delta ^{\vee }}}$ is a cycle or a tree.
LA - eng
KW - monomial ideal; linear resolution; linear quotient; variable-decomposability; Cohen-Macaulay simplicial complex
UR - http://eudml.org/doc/297484
ER -
References
top- Abbott, J., Bigatti, A. M., Lagorio, G., CoCoA-5: A system for doing Computations in Commutative Algebra, Available at http://cocoa.dima.unige.it/.
- Ajdani, S. M., Jahan, A. S., 10.1007/s40840-015-0129-x, Bull. Malays. Math. Sci. Soc. (2) 39 (2016), 609-617. (2016) Zbl1333.13031MR3471335DOI10.1007/s40840-015-0129-x
- Bigdeli, M., Herzog, J., Zaare-Nahandi, R., 10.1080/00927872.2017.1339058, Commun. Algebra 46 (2018), 1080-1095. (2018) Zbl1428.13032MR3780221DOI10.1080/00927872.2017.1339058
- Conca, A., Negri, E. De, 10.1006/jabr.1998.7740, J. Algebra 211 (1999), 599-624. (1999) Zbl0924.13012MR1666661DOI10.1006/jabr.1998.7740
- Conca, A., Herzog, J., Castelnuovo-Mumford regularity of product of ideals, Collect. Math. 54 (2003), 137-152. (2003) Zbl1074.13004MR1995137
- Eagon, J. A., Reiner, V., 10.1016/S0022-4049(97)00097-2, J. Pure Appl. Algebra 130 (1998), 265-275. (1998) Zbl0941.13016MR1633767DOI10.1016/S0022-4049(97)00097-2
- Emtander, E., 10.7146/math.scand.a-15124, Math. Scand. 106 (2010), 50-66. (2010) Zbl1183.05053MR2603461DOI10.7146/math.scand.a-15124
- Francisco, C. A., Tuyl, A. Van, 10.1090/S0002-9939-07-08841-7, Proc. Am. Math. Soc. 135 (2007), 2327-2337. (2007) Zbl1128.13013MR2302553DOI10.1090/S0002-9939-07-08841-7
- Fröberg, R., On Stanley-Reisner rings, Topics in Algebra. Part 2. Commutative Rings and Algebraic Groups Banach Center Publications 26. Polish Academy of Sciences, Institute of Mathematics, Warszaw (1990), 57-70. (1990) Zbl0741.13006MR1171260
- Herzog, J., Hibi, T., 10.1007/978-0-85729-106-6, Graduate Texts in Mathematics 260. Springer, London (2011). (2011) Zbl1206.13001MR2724673DOI10.1007/978-0-85729-106-6
- Herzog, J., Hibi, T., Zheng, X., 10.7146/math.scand.a-14446, Math. Scand. 95 (2004), 23-32. (2004) Zbl1091.13013MR2091479DOI10.7146/math.scand.a-14446
- Herzog, J., Takayama, Y., 10.4310/HHA.2002.v4.n2.a13, Homology Homotopy Appl. 4 (2002), 277-294. (2002) Zbl1028.13008MR1918513DOI10.4310/HHA.2002.v4.n2.a13
- Morales, M., 10.1016/j.jalgebra.2010.08.025, J. Algebra 324 (2010), 3431-3456. (2010) Zbl1217.13007MR2735392DOI10.1016/j.jalgebra.2010.08.025
- Rahmati-Asghar, R., Yassemi, S., 10.1142/S1005386715000656, Algebra Colloq. 22 (2015), 745-756. (2015) Zbl1332.13019MR3420707DOI10.1142/S1005386715000656
- Madani, S. Saeedi, Kiani, D., Terai, N., Sequentially Cohen-Macaulay path ideals of cycles, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 54 (2011), 353-363. (2011) Zbl1265.13016MR2917856
- Woodroofe, R., Chordal and sequentially Cohen-Macaulay clutters, Electron. J. Comb. 18 (2011), Article ID P208, 20 pages. (2011) Zbl1236.05213MR2853065
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.