A note on the size Ramsey numbers for matchings versus cycles
Mathematica Bohemica (2021)
- Volume: 146, Issue: 2, page 229-234
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBaskoro, Edy Tri, and Vetrík, Tomáš. "A note on the size Ramsey numbers for matchings versus cycles." Mathematica Bohemica 146.2 (2021): 229-234. <http://eudml.org/doc/297486>.
@article{Baskoro2021,
abstract = {For graphs $G$, $F_1$, $F_2$, we write $G \rightarrow (F_1, F_2)$ if for every red-blue colouring of the edge set of $G$ we have a red copy of $F_1$ or a blue copy of $F_2$ in $G$. The size Ramsey number $\hat\{r\}(F_1, F_2)$ is the minimum number of edges of a graph $G$ such that $G \rightarrow (F_1, F_2)$. Erdős and Faudree proved that for the cycle $C_n$ of length $n$ and for $t \ge 2$ matchings $tK_2$, the size Ramsey number $\hat\{r\} (tK_2, C_n) < n + (4t+3) \sqrt\{n\}$. We improve their upper bound for $t = 2$ and $t=3$ by showing that $\hat\{r\} (2K_2, C_n) \le n + 2 \sqrt\{3n\} + 9$ for $n \ge 12$ and $\hat\{r\} (3K_2, C_n) < n + 6 \sqrt\{n\} + 9$ for $n \ge 25$.},
author = {Baskoro, Edy Tri, Vetrík, Tomáš},
journal = {Mathematica Bohemica},
keywords = {size Ramsey number; matching; cycle},
language = {eng},
number = {2},
pages = {229-234},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the size Ramsey numbers for matchings versus cycles},
url = {http://eudml.org/doc/297486},
volume = {146},
year = {2021},
}
TY - JOUR
AU - Baskoro, Edy Tri
AU - Vetrík, Tomáš
TI - A note on the size Ramsey numbers for matchings versus cycles
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 2
SP - 229
EP - 234
AB - For graphs $G$, $F_1$, $F_2$, we write $G \rightarrow (F_1, F_2)$ if for every red-blue colouring of the edge set of $G$ we have a red copy of $F_1$ or a blue copy of $F_2$ in $G$. The size Ramsey number $\hat{r}(F_1, F_2)$ is the minimum number of edges of a graph $G$ such that $G \rightarrow (F_1, F_2)$. Erdős and Faudree proved that for the cycle $C_n$ of length $n$ and for $t \ge 2$ matchings $tK_2$, the size Ramsey number $\hat{r} (tK_2, C_n) < n + (4t+3) \sqrt{n}$. We improve their upper bound for $t = 2$ and $t=3$ by showing that $\hat{r} (2K_2, C_n) \le n + 2 \sqrt{3n} + 9$ for $n \ge 12$ and $\hat{r} (3K_2, C_n) < n + 6 \sqrt{n} + 9$ for $n \ge 25$.
LA - eng
KW - size Ramsey number; matching; cycle
UR - http://eudml.org/doc/297486
ER -
References
top- Effendi, Ginting, B., Surahmat, Dafik, Sy, S., 10.17654/MS102030507, Far East J. Math. Sci. (FJMS) 102 (2017), 507-514. (2017) Zbl1378.05125DOI10.17654/MS102030507
- Erdős, P., Faudree, R. J., 10.1016/B978-0-444-86893-0.50019-X, Finite and Infinite Sets. Vol. I, II (Eger, 1981) Colloquia Mathematica Societatis János Bolyai 37. János Bolyai Mathematical Society, Budapest; North-Holland, Amsterdam (1984), 247-264 A. Hajnal et al. (1984) Zbl0563.05043MR0818238DOI10.1016/B978-0-444-86893-0.50019-X
- Erdős, P., Faudree, R. J., Rousseau, C. C., Schelp, R. H., 10.1007/BF02018930, Period. Math. Hung. 9 (1978), 145-161. (1978) Zbl0331.05122MR0479691DOI10.1007/BF02018930
- Faudree, R. J., Sheehan, J., 10.1002/jgt.3190070107, J. Graph Theory 7 (1983), 53-55. (1983) Zbl0505.05043MR0693020DOI10.1002/jgt.3190070107
- Ke, X., 10.1002/rsa.3240040106, Random Struct. Algorithms 4 (1993), 85-97. (1993) Zbl0778.05060MR1192528DOI10.1002/rsa.3240040106
- Lortz, R., Mengersen, I., Size Ramsey results for paths versus stars, Australas. J. Comb. 18 (1998), 3-12. (1998) Zbl0914.05053MR1658352
- Perondi, P. H., Carmelo, E. L. Monte, 10.1016/j.dam.2018.05.016, Discrete Appl. Math. 250 (2018), 368-372. (2018) Zbl1398.05131MR3868682DOI10.1016/j.dam.2018.05.016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.