Rings whose nonsingular right modules are R -projective

Yusuf Alagöz; Sinem Benli; Engin Büyükaşık

Commentationes Mathematicae Universitatis Carolinae (2021)

  • Volume: 62, Issue: 4, page 393-407
  • ISSN: 0010-2628

Abstract

top
A right R -module M is called R -projective provided that it is projective relative to the right R -module R R . This paper deals with the rings whose all nonsingular right modules are R -projective. For a right nonsingular ring R , we prove that R R is of finite Goldie rank and all nonsingular right R -modules are R -projective if and only if R is right finitely Σ - C S and flat right R -modules are R -projective. Then, R -projectivity of the class of nonsingular injective right modules is also considered. Over right nonsingular rings of finite right Goldie rank, it is shown that R -projectivity of nonsingular injective right modules is equivalent to R -projectivity of the injective hull E ( R R ) . In this case, the injective hull E ( R R ) has the decomposition E ( R R ) = U R V R , where U is projective and Hom ( V , R / I ) = 0 for each right ideal I of R . Finally, we focus on the right orthogonal class 𝒩 of the class 𝒩 of nonsingular right modules.

How to cite

top

Alagöz, Yusuf, Benli, Sinem, and Büyükaşık, Engin. "Rings whose nonsingular right modules are $R$-projective." Commentationes Mathematicae Universitatis Carolinae 62.4 (2021): 393-407. <http://eudml.org/doc/297492>.

@article{Alagöz2021,
abstract = {A right $R$-module $M$ is called $R$-projective provided that it is projective relative to the right $R$-module $R_\{R\}$. This paper deals with the rings whose all nonsingular right modules are $R$-projective. For a right nonsingular ring $R$, we prove that $R_\{R\}$ is of finite Goldie rank and all nonsingular right $R$-modules are $R$-projective if and only if $R$ is right finitely $\Sigma $-$CS$ and flat right $R$-modules are $R$-projective. Then, $R$-projectivity of the class of nonsingular injective right modules is also considered. Over right nonsingular rings of finite right Goldie rank, it is shown that $R$-projectivity of nonsingular injective right modules is equivalent to $R$-projectivity of the injective hull $E(R_\{R\})$. In this case, the injective hull $E(R_\{R\})$ has the decomposition $E(R_\{R\})=U_\{R\} \oplus V_\{R\}$, where $U$ is projective and $\operatorname\{Hom\}(V,R/I)=0$ for each right ideal $I$ of $R$. Finally, we focus on the right orthogonal class $\mathcal \{N\}^\{\perp \}$ of the class $\mathcal \{N\}$ of nonsingular right modules.},
author = {Alagöz, Yusuf, Benli, Sinem, Büyükaşık, Engin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonsingular module; $R$-projective module; flat module; perfect ring},
language = {eng},
number = {4},
pages = {393-407},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Rings whose nonsingular right modules are $R$-projective},
url = {http://eudml.org/doc/297492},
volume = {62},
year = {2021},
}

TY - JOUR
AU - Alagöz, Yusuf
AU - Benli, Sinem
AU - Büyükaşık, Engin
TI - Rings whose nonsingular right modules are $R$-projective
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62
IS - 4
SP - 393
EP - 407
AB - A right $R$-module $M$ is called $R$-projective provided that it is projective relative to the right $R$-module $R_{R}$. This paper deals with the rings whose all nonsingular right modules are $R$-projective. For a right nonsingular ring $R$, we prove that $R_{R}$ is of finite Goldie rank and all nonsingular right $R$-modules are $R$-projective if and only if $R$ is right finitely $\Sigma $-$CS$ and flat right $R$-modules are $R$-projective. Then, $R$-projectivity of the class of nonsingular injective right modules is also considered. Over right nonsingular rings of finite right Goldie rank, it is shown that $R$-projectivity of nonsingular injective right modules is equivalent to $R$-projectivity of the injective hull $E(R_{R})$. In this case, the injective hull $E(R_{R})$ has the decomposition $E(R_{R})=U_{R} \oplus V_{R}$, where $U$ is projective and $\operatorname{Hom}(V,R/I)=0$ for each right ideal $I$ of $R$. Finally, we focus on the right orthogonal class $\mathcal {N}^{\perp }$ of the class $\mathcal {N}$ of nonsingular right modules.
LA - eng
KW - nonsingular module; $R$-projective module; flat module; perfect ring
UR - http://eudml.org/doc/297492
ER -

References

top
  1. Alagöz Y., Büyükaşik E., 10.1142/S021949882150095X, J. Algebra Appl. 20 (2021), no. 6, Paper No. 2150095, 25 pages. MR4256344DOI10.1142/S021949882150095X
  2. Alhilali H., Ibrahim Y., Puninski G., Yousif M., 10.1016/j.jalgebra.2017.04.010, J. Algebra 484 (2017), 198–206. MR3656718DOI10.1016/j.jalgebra.2017.04.010
  3. Amini B., Amini A., Ershad M., 10.1080/00927870902828918, Comm. Algebra 37 (2009), no. 12, 4227–4240. MR2588845DOI10.1080/00927870902828918
  4. Amini A., Ershad M., Sharif H., Rings over which flat covers of finitely generated modules are projective, Comm. Algebra 36 (2008), no. 8, 2862–2871. MR2440285
  5. Anderson F. W., Fuller K. R., 10.1007/978-1-4612-4418-9_2, Graduate Texts in Mathematics, 13, Springer, New York, 1992. Zbl0765.16001MR1245487DOI10.1007/978-1-4612-4418-9_2
  6. Bican L., 10.21136/MB.2003.134006, Math. Bohem. 128 (2003), no. 4, 395–400. MR2032476DOI10.21136/MB.2003.134006
  7. Cheatham T. J., 10.2140/pjm.1971.39.113, Pacific J. Math. 39 (1971), 113–118. MR0304430DOI10.2140/pjm.1971.39.113
  8. Dinh H. Q., Holston C. J., Huynh D. V., 10.1016/j.jalgebra.2012.04.002, J. Algebra 360 (2012), 87–91. MR2914635DOI10.1016/j.jalgebra.2012.04.002
  9. Dung N. V., 10.7146/math.scand.a-12313, Math. Scand. 66 (1990), no. 2, 301–306. MR1075146DOI10.7146/math.scand.a-12313
  10. Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., Extending Modules, Pitman Research Notes in Mathematics Series, 313, Longman Scientific & Technical, Harlow, John Wiley & Sons, New York, 1994. Zbl0841.16001MR1312366
  11. Durğun Y., A generalization of C -rings, Ege Uni. J. of Faculty of Sci. 37 (2013), no. 2, 6–15. 
  12. Enochs E. E., Jenda O. M. G., Relative Homological Algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter & Co., Berlin, 2000. Zbl0952.13001MR1753146
  13. Faith C., 10.2140/pjm.1973.45.97, Pacific J. Math. 45 (1973), 97–112. MR0320069DOI10.2140/pjm.1973.45.97
  14. Faith C., Algebra. II. Ring Theory, Grundlehren der Mathematischen Wissenschaften, 191, Springer, Berlin, 1976. MR0427349
  15. Göbel R., Trlifaj J., Approximations and endomorphism algebras of modules, De Gruyter Expositions in Mathematics, 41, Walter de Gruyter GmbH & Co., Berlin, 2006. MR2251271
  16. Golan J. S., Teply M. L., 10.1007/BF02787570, Israel J. Math. 15 (1973), 237–256. MR0325687DOI10.1007/BF02787570
  17. Goodearl K. R., Ring Theory, Nonsingular Rings and Modules Pure and Applied Mathematics, 33, Marcel Dekker, New York, 1976. MR0429962
  18. Hamsher R. M., Commutative, noetherian rings over which every module has a maximal submodule, Proc. Amer. Math. Soc. 17 (1966), 1471–1472. MR0200303
  19. Herbera D., Trlifaj J., 10.1016/j.aim.2012.02.013, Adv. Math. 229 (2012), no. 6, 3436–3467. MR2900444DOI10.1016/j.aim.2012.02.013
  20. Holm H., Jørgensen P., Covers, precovers, and purity, Illinois J. Math. 52 (2008), no. 2, 691–703. Zbl1189.16007MR2524661
  21. Ketkar R. D., Vanaja N., 10.4153/CMB-1981-055-x, Canad. Math. Bull. 24 (1981), no. 3, 365–367. MR0632748DOI10.4153/CMB-1981-055-x
  22. Lam T. Y., 10.1007/978-1-4612-0525-8, Graduate Texts in Mathematics, 189, Springer, New York, 1999. Zbl0911.16001MR1653294DOI10.1007/978-1-4612-0525-8
  23. Lam T. Y., 10.1007/978-1-4419-8616-0, Graduate Texts in Mathematics, 131, Springer, New York, 2001. Zbl0980.16001MR1838439DOI10.1007/978-1-4419-8616-0
  24. Nicholson W. K., 10.4153/CJM-1976-109-2, Canadian J. Math. 28 (1976), no. 5, 1105–1120. MR0422343DOI10.4153/CJM-1976-109-2
  25. Sandomierski F. L., Relative Injectivity and Projectivity, Ph.D. Thesis, The Pennsylvania State University, ProQuest LLC, Ann Arbor, 1964. MR2614575
  26. Sandomierski F. L., 10.1090/S0002-9939-1968-0219568-5, Proc. Amer. Math. Soc. 19 (1968), 225–230. MR0219568DOI10.1090/S0002-9939-1968-0219568-5
  27. Šaroch J., 10.1007/s11856-018-1710-4, Israel J. of Math. 226 (2018), no. 2, 737–756. MR3819707DOI10.1007/s11856-018-1710-4
  28. Stenström B., Rings of Quotients, An introduction to Methods of Ring Theory, Die Grundlehren der mathematischen Wissenschaften, 217, Springer, New York, 1975. MR0389953
  29. Teply M. L., 10.2140/pjm.1969.28.441, Pacific J. Math. 28 (1969), no. 2, 441–453. MR0242878DOI10.2140/pjm.1969.28.441
  30. Teply M. L., Torsion-free covers. II, Israel J. Math. 23 (1976), no. 2, 132–136. MR0417245
  31. Trlifaj J., 10.1090/proc/14209, Proc. Amer. Math. Soc. 147 (2019), no. 2, 497–504. MR3894889DOI10.1090/proc/14209
  32. Trlifaj J., 10.1515/forum-2019-0028, Forum Math. 32 (2020), no. 3, 663–672. MR4095500DOI10.1515/forum-2019-0028
  33. Turnidge D. R., 10.1090/S0002-9939-1970-0255601-1, Proc. Amer. Math. Soc. 24 (1970), 137–143. MR0255601DOI10.1090/S0002-9939-1970-0255601-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.