Rings whose nonsingular right modules are -projective
Yusuf Alagöz; Sinem Benli; Engin Büyükaşık
Commentationes Mathematicae Universitatis Carolinae (2021)
- Volume: 62, Issue: 4, page 393-407
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAlagöz, Yusuf, Benli, Sinem, and Büyükaşık, Engin. "Rings whose nonsingular right modules are $R$-projective." Commentationes Mathematicae Universitatis Carolinae 62.4 (2021): 393-407. <http://eudml.org/doc/297492>.
@article{Alagöz2021,
abstract = {A right $R$-module $M$ is called $R$-projective provided that it is projective relative to the right $R$-module $R_\{R\}$. This paper deals with the rings whose all nonsingular right modules are $R$-projective. For a right nonsingular ring $R$, we prove that $R_\{R\}$ is of finite Goldie rank and all nonsingular right $R$-modules are $R$-projective if and only if $R$ is right finitely $\Sigma $-$CS$ and flat right $R$-modules are $R$-projective. Then, $R$-projectivity of the class of nonsingular injective right modules is also considered. Over right nonsingular rings of finite right Goldie rank, it is shown that $R$-projectivity of nonsingular injective right modules is equivalent to $R$-projectivity of the injective hull $E(R_\{R\})$. In this case, the injective hull $E(R_\{R\})$ has the decomposition $E(R_\{R\})=U_\{R\} \oplus V_\{R\}$, where $U$ is projective and $\operatorname\{Hom\}(V,R/I)=0$ for each right ideal $I$ of $R$. Finally, we focus on the right orthogonal class $\mathcal \{N\}^\{\perp \}$ of the class $\mathcal \{N\}$ of nonsingular right modules.},
author = {Alagöz, Yusuf, Benli, Sinem, Büyükaşık, Engin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonsingular module; $R$-projective module; flat module; perfect ring},
language = {eng},
number = {4},
pages = {393-407},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Rings whose nonsingular right modules are $R$-projective},
url = {http://eudml.org/doc/297492},
volume = {62},
year = {2021},
}
TY - JOUR
AU - Alagöz, Yusuf
AU - Benli, Sinem
AU - Büyükaşık, Engin
TI - Rings whose nonsingular right modules are $R$-projective
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62
IS - 4
SP - 393
EP - 407
AB - A right $R$-module $M$ is called $R$-projective provided that it is projective relative to the right $R$-module $R_{R}$. This paper deals with the rings whose all nonsingular right modules are $R$-projective. For a right nonsingular ring $R$, we prove that $R_{R}$ is of finite Goldie rank and all nonsingular right $R$-modules are $R$-projective if and only if $R$ is right finitely $\Sigma $-$CS$ and flat right $R$-modules are $R$-projective. Then, $R$-projectivity of the class of nonsingular injective right modules is also considered. Over right nonsingular rings of finite right Goldie rank, it is shown that $R$-projectivity of nonsingular injective right modules is equivalent to $R$-projectivity of the injective hull $E(R_{R})$. In this case, the injective hull $E(R_{R})$ has the decomposition $E(R_{R})=U_{R} \oplus V_{R}$, where $U$ is projective and $\operatorname{Hom}(V,R/I)=0$ for each right ideal $I$ of $R$. Finally, we focus on the right orthogonal class $\mathcal {N}^{\perp }$ of the class $\mathcal {N}$ of nonsingular right modules.
LA - eng
KW - nonsingular module; $R$-projective module; flat module; perfect ring
UR - http://eudml.org/doc/297492
ER -
References
top- Alagöz Y., Büyükaşik E., 10.1142/S021949882150095X, J. Algebra Appl. 20 (2021), no. 6, Paper No. 2150095, 25 pages. MR4256344DOI10.1142/S021949882150095X
- Alhilali H., Ibrahim Y., Puninski G., Yousif M., 10.1016/j.jalgebra.2017.04.010, J. Algebra 484 (2017), 198–206. MR3656718DOI10.1016/j.jalgebra.2017.04.010
- Amini B., Amini A., Ershad M., 10.1080/00927870902828918, Comm. Algebra 37 (2009), no. 12, 4227–4240. MR2588845DOI10.1080/00927870902828918
- Amini A., Ershad M., Sharif H., Rings over which flat covers of finitely generated modules are projective, Comm. Algebra 36 (2008), no. 8, 2862–2871. MR2440285
- Anderson F. W., Fuller K. R., 10.1007/978-1-4612-4418-9_2, Graduate Texts in Mathematics, 13, Springer, New York, 1992. Zbl0765.16001MR1245487DOI10.1007/978-1-4612-4418-9_2
- Bican L., 10.21136/MB.2003.134006, Math. Bohem. 128 (2003), no. 4, 395–400. MR2032476DOI10.21136/MB.2003.134006
- Cheatham T. J., 10.2140/pjm.1971.39.113, Pacific J. Math. 39 (1971), 113–118. MR0304430DOI10.2140/pjm.1971.39.113
- Dinh H. Q., Holston C. J., Huynh D. V., 10.1016/j.jalgebra.2012.04.002, J. Algebra 360 (2012), 87–91. MR2914635DOI10.1016/j.jalgebra.2012.04.002
- Dung N. V., 10.7146/math.scand.a-12313, Math. Scand. 66 (1990), no. 2, 301–306. MR1075146DOI10.7146/math.scand.a-12313
- Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., Extending Modules, Pitman Research Notes in Mathematics Series, 313, Longman Scientific & Technical, Harlow, John Wiley & Sons, New York, 1994. Zbl0841.16001MR1312366
- Durğun Y., A generalization of -rings, Ege Uni. J. of Faculty of Sci. 37 (2013), no. 2, 6–15.
- Enochs E. E., Jenda O. M. G., Relative Homological Algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter & Co., Berlin, 2000. Zbl0952.13001MR1753146
- Faith C., 10.2140/pjm.1973.45.97, Pacific J. Math. 45 (1973), 97–112. MR0320069DOI10.2140/pjm.1973.45.97
- Faith C., Algebra. II. Ring Theory, Grundlehren der Mathematischen Wissenschaften, 191, Springer, Berlin, 1976. MR0427349
- Göbel R., Trlifaj J., Approximations and endomorphism algebras of modules, De Gruyter Expositions in Mathematics, 41, Walter de Gruyter GmbH & Co., Berlin, 2006. MR2251271
- Golan J. S., Teply M. L., 10.1007/BF02787570, Israel J. Math. 15 (1973), 237–256. MR0325687DOI10.1007/BF02787570
- Goodearl K. R., Ring Theory, Nonsingular Rings and Modules Pure and Applied Mathematics, 33, Marcel Dekker, New York, 1976. MR0429962
- Hamsher R. M., Commutative, noetherian rings over which every module has a maximal submodule, Proc. Amer. Math. Soc. 17 (1966), 1471–1472. MR0200303
- Herbera D., Trlifaj J., 10.1016/j.aim.2012.02.013, Adv. Math. 229 (2012), no. 6, 3436–3467. MR2900444DOI10.1016/j.aim.2012.02.013
- Holm H., Jørgensen P., Covers, precovers, and purity, Illinois J. Math. 52 (2008), no. 2, 691–703. Zbl1189.16007MR2524661
- Ketkar R. D., Vanaja N., 10.4153/CMB-1981-055-x, Canad. Math. Bull. 24 (1981), no. 3, 365–367. MR0632748DOI10.4153/CMB-1981-055-x
- Lam T. Y., 10.1007/978-1-4612-0525-8, Graduate Texts in Mathematics, 189, Springer, New York, 1999. Zbl0911.16001MR1653294DOI10.1007/978-1-4612-0525-8
- Lam T. Y., 10.1007/978-1-4419-8616-0, Graduate Texts in Mathematics, 131, Springer, New York, 2001. Zbl0980.16001MR1838439DOI10.1007/978-1-4419-8616-0
- Nicholson W. K., 10.4153/CJM-1976-109-2, Canadian J. Math. 28 (1976), no. 5, 1105–1120. MR0422343DOI10.4153/CJM-1976-109-2
- Sandomierski F. L., Relative Injectivity and Projectivity, Ph.D. Thesis, The Pennsylvania State University, ProQuest LLC, Ann Arbor, 1964. MR2614575
- Sandomierski F. L., 10.1090/S0002-9939-1968-0219568-5, Proc. Amer. Math. Soc. 19 (1968), 225–230. MR0219568DOI10.1090/S0002-9939-1968-0219568-5
- Šaroch J., 10.1007/s11856-018-1710-4, Israel J. of Math. 226 (2018), no. 2, 737–756. MR3819707DOI10.1007/s11856-018-1710-4
- Stenström B., Rings of Quotients, An introduction to Methods of Ring Theory, Die Grundlehren der mathematischen Wissenschaften, 217, Springer, New York, 1975. MR0389953
- Teply M. L., 10.2140/pjm.1969.28.441, Pacific J. Math. 28 (1969), no. 2, 441–453. MR0242878DOI10.2140/pjm.1969.28.441
- Teply M. L., Torsion-free covers. II, Israel J. Math. 23 (1976), no. 2, 132–136. MR0417245
- Trlifaj J., 10.1090/proc/14209, Proc. Amer. Math. Soc. 147 (2019), no. 2, 497–504. MR3894889DOI10.1090/proc/14209
- Trlifaj J., 10.1515/forum-2019-0028, Forum Math. 32 (2020), no. 3, 663–672. MR4095500DOI10.1515/forum-2019-0028
- Turnidge D. R., 10.1090/S0002-9939-1970-0255601-1, Proc. Amer. Math. Soc. 24 (1970), 137–143. MR0255601DOI10.1090/S0002-9939-1970-0255601-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.