Coarse homotopy on metric spaces and their corona

Elisa Hartmann

Commentationes Mathematicae Universitatis Carolinae (2021)

  • Issue: 2, page 243-257
  • ISSN: 0010-2628

Abstract

top
This paper discusses properties of the Higson corona by means of a quotient on coarse ultrafilters on a proper metric space. We use this description to show that the corona functor is faithful and reflects isomorphisms.

How to cite

top

Hartmann, Elisa. "Coarse homotopy on metric spaces and their corona." Commentationes Mathematicae Universitatis Carolinae (2021): 243-257. <http://eudml.org/doc/297493>.

@article{Hartmann2021,
abstract = {This paper discusses properties of the Higson corona by means of a quotient on coarse ultrafilters on a proper metric space. We use this description to show that the corona functor is faithful and reflects isomorphisms.},
author = {Hartmann, Elisa},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Higson corona; coarse geometry},
language = {eng},
number = {2},
pages = {243-257},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Coarse homotopy on metric spaces and their corona},
url = {http://eudml.org/doc/297493},
year = {2021},
}

TY - JOUR
AU - Hartmann, Elisa
TI - Coarse homotopy on metric spaces and their corona
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 2
SP - 243
EP - 257
AB - This paper discusses properties of the Higson corona by means of a quotient on coarse ultrafilters on a proper metric space. We use this description to show that the corona functor is faithful and reflects isomorphisms.
LA - eng
KW - Higson corona; coarse geometry
UR - http://eudml.org/doc/297493
ER -

References

top
  1. Baladze V., Dumbadze F., On (co)homological properties of Stone–Čech compactifications of completely regular spaces, available at arXiv:1806.01566 [math.AT] (2018), 12 pages. MR4036389
  2. Ball B. J., Yokura S., 10.1016/0166-8641(83)90041-X, Topology Appl. 15 (1983), no. 1, 1–6. MR0676960DOI10.1016/0166-8641(83)90041-X
  3. Banakh T., Chervak O., Zdomskyy L., On character of points in the Higson corona of a metric space, Comment. Math. Univ. Carolin. 54 (2013), no. 2, 159–178. MR3067701
  4. Cornulier Y., de la Harpe P., Metric Geometry of Locally Compact Groups, EMS Tracts in Mathematics, 25, European Mathematical Society (EMS), Zürich, 2016. MR3561300
  5. Dranishnikov A. N., Keesling J., Uspenskij V. V., 10.1016/S0040-9383(97)00048-7, Topology 37 (1998), no. 4, 791–803. Zbl0910.54026MR1607744DOI10.1016/S0040-9383(97)00048-7
  6. Foertsch T., Schroeder V., 10.1023/B:GEOM.0000006539.14783.aa, Geom. Dedicata 102 (2003), 197–212. MR2026845DOI10.1023/B:GEOM.0000006539.14783.aa
  7. Grzegrzolka P., Siegert J., Boundaries of coarse proximity spaces and boundaries of compactifications, available at arXiv:1812.09802 [math.GN] (2020), 27 pages. 
  8. Hartmann E., Twisted coefficients on coarse spaces and their corona, available at arXiv:1904.00380 [math.MG] (2019), 14 pages. 
  9. Hartmann E., A pullback diagram in the coarse category, available at arXiv:1907.02961v1 [math.MG] (2019), 17 pages. 
  10. Hartmann E., 10.1515/ms-2017-0440, Math. Slovaca 70 (2020), no. 6, 1413–1444. MR4185787DOI10.1515/ms-2017-0440
  11. Kalantari S., Honari B., 10.1216/RMJ-2016-46-4-1231, Rocky Mountain J. Math. 46 (2016), no. 4, 1231–1262. MR3563180DOI10.1216/RMJ-2016-46-4-1231
  12. Protasov I. V., Normal ball structures, Mat. Stud. 20 (2003), no. 1, 3–16. Zbl1053.54503MR2019592
  13. Protasov I. V., 10.1016/j.topol.2004.09.005, Topology Appl. 149 (2005), no. 1–3, 149–160. Zbl1068.54036MR2130861DOI10.1016/j.topol.2004.09.005
  14. Protasov I. V., Coronas of ultrametric spaces, Comment. Math. Univ. Carolin. 52 (2011), no. 2, 303–307. Zbl1240.54087MR2849052
  15. Protasov I. V., Slobodianiuk S. V., Ultrafilters on balleans, Ukraïn. Mat. Zh. 67 (2015), no. 12, 1698–1706; reprinted in Ukrainian Math. J. 67 (2016), no. 12, 1922–1931. MR3541296
  16. Riehl E., Category Theory in Context, Courier Dover Publications, Dover, 2017. 
  17. Roe J., 10.1090/ulect/031/10, University Lecture Series, 31, American Mathematical Society, Providence, 2003. Zbl1042.53027MR2007488DOI10.1090/ulect/031/10

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.