On character of points in the Higson corona of a metric space
Taras O. Banakh; Ostap Chervak; Lubomyr Zdomskyy
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 2, page 159-178
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBanakh, Taras O., Chervak, Ostap, and Zdomskyy, Lubomyr. "On character of points in the Higson corona of a metric space." Commentationes Mathematicae Universitatis Carolinae 54.2 (2013): 159-178. <http://eudml.org/doc/252456>.
@article{Banakh2013,
abstract = {We prove that for an unbounded metric space $X$, the minimal character $\mathsf \{m\}\chi (\check\{X\})$ of a point of the Higson corona $\check\{X\}$ of $X$ is equal to $\mathfrak \{u\}$ if $X$ has asymptotically isolated balls and to $\max \lbrace \mathfrak \{u\},\mathfrak \{d\}\rbrace $ otherwise. This implies that under $\mathfrak \{u\} < \mathfrak \{d\}$ a metric space $X$ of bounded geometry is coarsely equivalent to the Cantor macro-cube $2^\{<\mathbb \{N\}\}$ if and only if $\dim (\check\{X\})=0$ and $\mathsf \{m\}\chi (\check\{X\})= \mathfrak \{d\}$. This contrasts with a result of Protasov saying that under CH the coronas of any two asymptotically zero-dimensional unbounded metric separable spaces are homeomorphic.},
author = {Banakh, Taras O., Chervak, Ostap, Zdomskyy, Lubomyr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Higson corona; character of a point; ultrafilter number; dominating number; Higson corona; character of a point; ultrafilter number; dominating number},
language = {eng},
number = {2},
pages = {159-178},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On character of points in the Higson corona of a metric space},
url = {http://eudml.org/doc/252456},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Banakh, Taras O.
AU - Chervak, Ostap
AU - Zdomskyy, Lubomyr
TI - On character of points in the Higson corona of a metric space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 2
SP - 159
EP - 178
AB - We prove that for an unbounded metric space $X$, the minimal character $\mathsf {m}\chi (\check{X})$ of a point of the Higson corona $\check{X}$ of $X$ is equal to $\mathfrak {u}$ if $X$ has asymptotically isolated balls and to $\max \lbrace \mathfrak {u},\mathfrak {d}\rbrace $ otherwise. This implies that under $\mathfrak {u} < \mathfrak {d}$ a metric space $X$ of bounded geometry is coarsely equivalent to the Cantor macro-cube $2^{<\mathbb {N}}$ if and only if $\dim (\check{X})=0$ and $\mathsf {m}\chi (\check{X})= \mathfrak {d}$. This contrasts with a result of Protasov saying that under CH the coronas of any two asymptotically zero-dimensional unbounded metric separable spaces are homeomorphic.
LA - eng
KW - Higson corona; character of a point; ultrafilter number; dominating number; Higson corona; character of a point; ultrafilter number; dominating number
UR - http://eudml.org/doc/252456
ER -
References
top- Banakh T., Zarichnyi I., 10.4171/GGD/145, Groups Geom. Dyn. 5 (2011), no. 4, 691–728. Zbl1246.54023MR2836457DOI10.4171/GGD/145
- Banakh T., Zarichnyi I., A coarse characterization of the Baire macro-space, Proc. of Intern. Geometry Center 3 (2010), no. 4, 6–14 (available at http://arxiv.org/abs/1103.5118).
- Banakh T., Zdomskyy L., The coherence of semifilters: a survey. Selection principles and covering properties in topology, 53–105, Quad. Mat., 18, Dept. Math., Seconda Univ. Napoli, Caserta, 2006. MR2395751
- Banakh T., Zdomskyy L., Coherence of Semifilters, book in progress, http://www.franko.lviv.ua/faculty/mechmat/Departments/Topology/booksite.html. Zbl1162.03026
- Bell G., Dranishnikov A., Asymptotic dimension, Topology Appl. 155 (2008), no. 12, 1265–1296. MR2423966
- Blass A., 10.1305/ndjfl/1093636772, Notre Dame J. Formal Logic 27 (1986), 579–591. Zbl0622.03040MR0867002DOI10.1305/ndjfl/1093636772
- Blass A., 10.1007/978-1-4020-5764-9_7, in: Handbook of Set Theory, Chapter 6, pp. 395–489, Springer, Dordrecht, 2010. MR2768685DOI10.1007/978-1-4020-5764-9_7
- Canjar M., 10.1305/ndjfl/1093635237, Notre Dame J. Formal Logic 30 (1989), no. 4, 539–542. Zbl0694.03029MR1036675DOI10.1305/ndjfl/1093635237
- van Douwen E., The integers and topology, in: Handbook of Set-theoretic Topology, 111–167, North-Holland, Amsterdam, 1984. Zbl0561.54004MR0776622
- Dranishnikov A., Asymptotic topology, Uspekhi Mat. Nauk 55 (2000), no. 6, 71–116. Zbl1028.54032MR1840358
- Dranishnikov A.N., Keesling J., Uspenskij V.V., 10.1016/S0040-9383(97)00048-7, Topology 37 (1998), no. 4, 791–803. Zbl0910.54026MR1607744DOI10.1016/S0040-9383(97)00048-7
- Dranishnikov A., Zarichnyi M., Universal spaces for asymptotic dimension, Topology Appl. 140 (2004), no. 2–3, 203–225. Zbl1063.54027MR2074917
- Fremlin D., Consequences of Martin's Axiom, Cambridge Tracts in Mathematics, 84, Cambridge University Press, London, 1984. Zbl1156.03050
- Kechris A., Classical Descriptive Set Theory, Springer, New York, 1995. Zbl0819.04002MR1321597
- Laflamme C., Zhu J.-P., 10.2307/2586852, J. Symbolic Logic 63 (1998), 584–592. Zbl0911.04001MR1627310DOI10.2307/2586852
- Protasov I.V., Normal ball structures, Mat. Stud. 20 (2003), 3–16. Zbl1053.54503MR2019592
- Protasov I.V., 10.1016/j.topol.2004.09.005, Topology Appl. 149 (2005), no. 1–3, 149–160. Zbl1068.54036MR2130861DOI10.1016/j.topol.2004.09.005
- Protasov I.V., Coronas of ultrametric spaces, Comment. Math. Univ. Carolin. 52 (2011), 303–307. Zbl1240.54087MR2849052
- Roe J., Lectures on Coarse Geometry, American Mathematical Society, Providence, RI, 2003. Zbl1042.53027MR2007488
- Vaughan J., Small uncountable cardinals and topology, in: Open Problems in Topology, 195–218, North-Holland, Amsterdam, 1990. MR1078647
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.