A general homogenization result of spectral problem for linearized elasticity in perforated domains
Mohamed Mourad Lhannafi Ait Yahia; Hamid Haddadou
Applications of Mathematics (2021)
- Volume: 66, Issue: 5, page 701-724
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAit Yahia, Mohamed Mourad Lhannafi, and Haddadou, Hamid. "A general homogenization result of spectral problem for linearized elasticity in perforated domains." Applications of Mathematics 66.5 (2021): 701-724. <http://eudml.org/doc/297514>.
@article{AitYahia2021,
abstract = {The goal of this paper is to establish a general homogenization result for linearized elasticity of an eigenvalue problem defined over perforated domains, beyond the periodic setting, within the framework of the $H^0$-convergence theory. Our main homogenization result states that the knowledge of the fourth-order tensor $A^0$, the $H^0$-limit of $A^\{\varepsilon \}$, is sufficient to determine the homogenized eigenvalue problem and preserve the structure of the spectrum. This theorem is proved essentially by using Tartar’s method of test functions, and some general arguments of spectral analysis used in the literature on the homogenization of eigenvalue problems. Moreover, we give a result on a particular case of a simple eigenvalue of the homogenized problem. We conclude our work by some comments and perspectives.},
author = {Ait Yahia, Mohamed Mourad Lhannafi, Haddadou, Hamid},
journal = {Applications of Mathematics},
keywords = {homogenization; $H$-convergence; perforated domain; linear elasticity; eigenvalue problem},
language = {eng},
number = {5},
pages = {701-724},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A general homogenization result of spectral problem for linearized elasticity in perforated domains},
url = {http://eudml.org/doc/297514},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Ait Yahia, Mohamed Mourad Lhannafi
AU - Haddadou, Hamid
TI - A general homogenization result of spectral problem for linearized elasticity in perforated domains
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 5
SP - 701
EP - 724
AB - The goal of this paper is to establish a general homogenization result for linearized elasticity of an eigenvalue problem defined over perforated domains, beyond the periodic setting, within the framework of the $H^0$-convergence theory. Our main homogenization result states that the knowledge of the fourth-order tensor $A^0$, the $H^0$-limit of $A^{\varepsilon }$, is sufficient to determine the homogenized eigenvalue problem and preserve the structure of the spectrum. This theorem is proved essentially by using Tartar’s method of test functions, and some general arguments of spectral analysis used in the literature on the homogenization of eigenvalue problems. Moreover, we give a result on a particular case of a simple eigenvalue of the homogenized problem. We conclude our work by some comments and perspectives.
LA - eng
KW - homogenization; $H$-convergence; perforated domain; linear elasticity; eigenvalue problem
UR - http://eudml.org/doc/297514
ER -
References
top- Briane, M., 10.1007/s005260100115, Calc. Var. Partial Differ. Equ. 15 (2002), 1-24. (2002) Zbl1028.35018MR1920712DOI10.1007/s005260100115
- Briane, M., Damlamian, A., Donato, P., -convergence in perforated domains, Nonlinear Partial Differential Equations and Their Applications Pitman Research Notes in Mathematics Series 391. Longman, Harlow (1998), 62-100. (1998) Zbl0943.35005MR1773075
- Cancedda, A., 10.1007/s40574-016-0075-z, Boll. Unione Mat. Ital. 10 (2017), 199-222. (2017) Zbl1377.35092MR3655025DOI10.1007/s40574-016-0075-z
- Cioranescu, D., Paulin, J. Saint Jean, 10.1007/978-1-4612-2158-6, Applied Mathematical Sciences 136. Springer, New York (1999). (1999) Zbl0929.35002MR1676922DOI10.1007/978-1-4612-2158-6
- Damlamian, A., Donato, P., 10.1051/cocv:2002046, ESAIM, Control Optim. Calc. Var. 8 (2002), 555-585. (2002) Zbl1073.35020MR1932963DOI10.1051/cocv:2002046
- Douanla, H., 10.1007/s10440-012-9765-4, Acta Appl. Math. 123 (2013), 261-284. (2013) Zbl1263.35022MR3010234DOI10.1007/s10440-012-9765-4
- Hajji, M. El, Homogenization of linearized elasticity systems with traction condition in perforated domains, Electron. J. Differ. Equ. 1999 (1999), Article ID 41, 11 pages. (1999) Zbl0952.74060MR1713600
- Hajji, M. El, Donato, P., -convergence for the linearized elasticity system, Asymptotic Anal. 21 (1999), 161-186. (1999) Zbl0942.74057MR1723547
- Francfort, G. A., Murat, F., 10.1007/BF00280908, Arch. Ration. Mech. Anal. 94 (1986), 307-334. (1986) Zbl0604.73013MR0846892DOI10.1007/BF00280908
- Georgelin, C., Contribution à l'étude de quelques problèmes en élasticité tridimensionnelle: Thèse de Doctorat, Université de Paris IV, Paris (1989), French. (1989)
- Haddadou, H., Iterated homogenization for the linearized elasticity by -convergence, Ric. Mat. 54 (2005), 137-163. (2005) Zbl1387.35034MR2290210
- Haddadou, H., A property of the -convergence for elasticity in perforated domains, Electron. J. Differ. Equ. 137 (2006), Article ID 137, 11 pages. (2006) Zbl1128.35017MR2276562
- Jikov, V. V., Kozlov, S. M., Oleinik, O. A., 10.1007/978-3-642-84659-5, Springer, Berlin (1994). (1994) Zbl0838.35001MR1329546DOI10.1007/978-3-642-84659-5
- Kesavan, S., 10.1007/BF01442551, Appl. Math. Optim. 5 (1979), 153-167. (1979) Zbl0415.35061MR0533617DOI10.1007/BF01442551
- Léné, F., Comportement macroscopique de matériaux élastiques comportant des inclusions rigides ou des trous répartis périodiquement, C. R. Acad. Sci., Paris, Sér. A 286 (1978), 75-78 French. (1978) Zbl0372.73001MR0486458
- Murat, F., Tartar, L., 10.1007/978-1-4612-2032-9_3, Topics in the Mathematical Modelling of Composite Materials Progress in Nonlinear Differential Equations and Their Applications 31. Birkhäuser, Boston (1997), 21-43. (1997) Zbl0920.35019MR1493039DOI10.1007/978-1-4612-2032-9_3
- Nandakumar, A. K., 10.3233/ASY-1994-9403, Asymptotic Anal. 9 (1994), 337-358. (1994) Zbl0814.35135MR1301169DOI10.3233/ASY-1994-9403
- Oleinik, O. A., Shamaev, A. S., Yosifian, G. A., 10.1016/s0168-2024(08)x7009-2, Studies in Mathematics and Its Applications 26. North-Holland, Amsterdam (1992). (1992) Zbl0768.73003MR1195131DOI10.1016/s0168-2024(08)x7009-2
- Spagnolo, S., Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 22 (1968), 571-597 Italian. (1968) Zbl0174.42101MR0240443
- Suslina, T. A., 10.1142/S0129055X18400160, Rev. Math. Phys. 30 (2018), Article ID 1840016, 57 pages. (2018) Zbl1411.35029MR3846431DOI10.1142/S0129055X18400160
- Tartar, L., Problèmes d'homogénéisation dans les équations aux dérivées partielles, Cours Peccot, Collège de France, Paris (1977), French. (1977)
- Tartar, L., 10.1007/978-3-642-05195-1, Lecture Notes of the Unione Matematica Italiana 7. Springer, Berlin (2009). (2009) Zbl1188.35004MR2582099DOI10.1007/978-3-642-05195-1
- Vanninathan, M., 10.1007/BF02838079, Proc. Indian Acad. Sci., Math. Sci. 90 (1981), 239-271. (1981) Zbl0486.35063MR0635561DOI10.1007/BF02838079
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.