An integral transform and its application in the propagation of Lorentz-Gaussian beams
A. Belafhal; E.M. El Halba; T. Usman
Communications in Mathematics (2021)
- Volume: 29, Issue: 3, page 483-491
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topBelafhal, A., Halba, E.M. El, and Usman, T.. "An integral transform and its application in the propagation of Lorentz-Gaussian beams." Communications in Mathematics 29.3 (2021): 483-491. <http://eudml.org/doc/297517>.
@article{Belafhal2021,
abstract = {The aim of the present note is to derive an integral transform \[I=\int \_\{0\}^\{\infty \} x^\{s+1\} e^\{-\beta x^\{2\}+\gamma x\} M\_\{k, \nu \}\left(2 \zeta x^\{2\}\right)J\_\{\mu \}(\chi x) dx,\]
involving the product of the Whittaker function $M_\{k, \nu \}$ and the Bessel function of the first kind $J_\{\mu \}$ of order $\mu $. As a by-product, we also derive certain new integral transforms as particular cases for some special values of the parameters $k$ and $\nu $ of the Whittaker function. Eventually, we show the application of the integral in the propagation of hollow higher-order circular Lorentz-cosh-Gaussian beams through an ABCD optical system (see, for details [Xu2019], [Collins1970]).},
author = {Belafhal, A., Halba, E.M. El, Usman, T.},
journal = {Communications in Mathematics},
keywords = {Integral transform; Bessel function; Whittaker function; Confluent hypergeometric function; Lorentz-Gaussian beams},
language = {eng},
number = {3},
pages = {483-491},
publisher = {University of Ostrava},
title = {An integral transform and its application in the propagation of Lorentz-Gaussian beams},
url = {http://eudml.org/doc/297517},
volume = {29},
year = {2021},
}
TY - JOUR
AU - Belafhal, A.
AU - Halba, E.M. El
AU - Usman, T.
TI - An integral transform and its application in the propagation of Lorentz-Gaussian beams
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 3
SP - 483
EP - 491
AB - The aim of the present note is to derive an integral transform \[I=\int _{0}^{\infty } x^{s+1} e^{-\beta x^{2}+\gamma x} M_{k, \nu }\left(2 \zeta x^{2}\right)J_{\mu }(\chi x) dx,\]
involving the product of the Whittaker function $M_{k, \nu }$ and the Bessel function of the first kind $J_{\mu }$ of order $\mu $. As a by-product, we also derive certain new integral transforms as particular cases for some special values of the parameters $k$ and $\nu $ of the Whittaker function. Eventually, we show the application of the integral in the propagation of hollow higher-order circular Lorentz-cosh-Gaussian beams through an ABCD optical system (see, for details [Xu2019], [Collins1970]).
LA - eng
KW - Integral transform; Bessel function; Whittaker function; Confluent hypergeometric function; Lorentz-Gaussian beams
UR - http://eudml.org/doc/297517
ER -
References
top- Andrews, G.E., Askey, R., Roy, R., Special Functions, 1999, Encyclopedia of Mathematics and its Applications 71. Cambridge University Press, Cambridge, (1999)
- Chen, R., An, C., 10.1016/j.amc.2014.03.016, App. Math. Comput., 235, 2014, 212-220, (2014) MR3194597DOI10.1016/j.amc.2014.03.016
- Collins, S.A., 10.1364/JOSA.60.001168, J. Opt. Soc. Am., 60, 9, 1970, 1168-1177, (1970) DOI10.1364/JOSA.60.001168
- Gradshteyn, I.S., Ryzhik, I.M., Table of Integrals, Series, and Products (5th edition), 1994, Academic Press Inc., Boston, (1994)
- Khan, N.U., Kashmin, T., On infinite series of three variables involving Whittaker and Bessel functions, Palest. J. Math., 5, 1, 2015, 185-190, (2015) MR3413773
- Khan, N.U., Usman, T., Ghayasuddin, M., A note on integral transforms associated with Humbert's confluent hypergeometric function, Electron. J. Math. Anal. Appl., 4, 2, 2016, 259-265, (2016)
- Rainville, E.D., Intermediate Differential Equations, 1964, Macmillan, (1964)
- Rainville, E.D., Special Functions, 1960, Macmillan Company, New York. Reprinted by Chelsea Publishing Company, Bronx, New York (1971), (1960)
- Srivastava, H.M., Manocha, H.L., A Treatise on Generating Functions, 1984, Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press, New York, (1984) Zbl0535.33001
- Watson, G.N., A Treatise on the Theory of Bessel Functions (second edition), 1944, Cambridge University Press, Cambridge, (1944)
- Whittaker, E.T., 10.1090/S0002-9904-1903-01077-5, Bull. Amer. Math. Soc., 10, 3, 1903, 1252–134, (1903) DOI10.1090/S0002-9904-1903-01077-5
- Whittaker, E.T., Watson, G.N., A Course of Modern Analysis (reprint of the fourth (1927) edition), 1996, Cambridge Mathematical Library, Cambridge University Press, Cambridge, (1996)
- Xu, Y., Zhou, G., 10.1364/JOSAA.36.000179, J. Opt. Soc. Am. A., 36, 2, 2019, 179-185, (2019) DOI10.1364/JOSAA.36.000179
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.