A frictional contact problem with adhesion for viscoelastic materials with long memory
Applications of Mathematics (2021)
- Volume: 66, Issue: 4, page 479-508
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKasri, Abderrezak. "A frictional contact problem with adhesion for viscoelastic materials with long memory." Applications of Mathematics 66.4 (2021): 479-508. <http://eudml.org/doc/297532>.
@article{Kasri2021,
abstract = {We consider a quasistatic contact problem between a viscoelastic material with long-term memory and a foundation. The contact is modelled with a normal compliance condition, a version of Coulomb's law of dry friction and a bonding field which describes the adhesion effect. We derive a variational formulation of the mechanical problem and, under a smallness assumption, we establish an existence theorem of a weak solution including a regularity result. The proof is based on the time-discretization method, the Banach fixed point theorem and arguments of lower semicontinuity, compactness and monotonicity.},
author = {Kasri, Abderrezak},
journal = {Applications of Mathematics},
keywords = {viscoelastic material; long memory; adhesion; quasistatic process; Coulomb's law of dry friction; normal compliance; the time-discretization method; variational inequality},
language = {eng},
number = {4},
pages = {479-508},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A frictional contact problem with adhesion for viscoelastic materials with long memory},
url = {http://eudml.org/doc/297532},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Kasri, Abderrezak
TI - A frictional contact problem with adhesion for viscoelastic materials with long memory
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 479
EP - 508
AB - We consider a quasistatic contact problem between a viscoelastic material with long-term memory and a foundation. The contact is modelled with a normal compliance condition, a version of Coulomb's law of dry friction and a bonding field which describes the adhesion effect. We derive a variational formulation of the mechanical problem and, under a smallness assumption, we establish an existence theorem of a weak solution including a regularity result. The proof is based on the time-discretization method, the Banach fixed point theorem and arguments of lower semicontinuity, compactness and monotonicity.
LA - eng
KW - viscoelastic material; long memory; adhesion; quasistatic process; Coulomb's law of dry friction; normal compliance; the time-discretization method; variational inequality
UR - http://eudml.org/doc/297532
ER -
References
top- Andersson, L.-E., 10.1016/0362-546X(91)90035-Y, Nonlinear Anal., Theory Methods Appl. 16 (1991), 347-369. (1991) Zbl0722.73061MR1093846DOI10.1016/0362-546X(91)90035-Y
- Brezis, H., 10.1007/978-0-387-70914-7, Universitext. Springer, New York (2011). (2011) Zbl1220.46002MR2759829DOI10.1007/978-0-387-70914-7
- Chau, O., Goeleven, D., Oujja, R., 10.1007/978-3-319-31338-2_4, Essays in Mathematics and Its Applications Springer, Cham (2016), 71-87. (2016) Zbl1405.35207MR3526915DOI10.1007/978-3-319-31338-2_4
- Chau, O., Shillor, M., Sofonea, M., 10.1007/s00033-003-1089-9, Z. Angew. Math. Phys. 55 (2004), 32-47. (2004) Zbl1064.74132MR2033859DOI10.1007/s00033-003-1089-9
- Chen, X., 10.1533/9781845697211, Elsevier, Amsterdam (2009). (2009) DOI10.1533/9781845697211
- Drozdov, A. D., 10.1142/2905, World Scientific, Singapore (1996). (1996) Zbl0839.73001MR1445291DOI10.1142/2905
- Duvaut, G., Lions, J.-L., Inequalities in Mechanics and Physics, Grundlehren der mathematischen Wissenschaften 219. Springer, Berlin (1976). (1976) Zbl0331.35002MR0521262
- Emmrich, E., Discrete versions of Gronwall's lemma and their application to the numerical analysis of parabolic problems, Preprint Series of the Institute of Mathematics Technische Universität Berlin (1999), Preprint 637-1999, 37 pages.
- Frémond, M., Adhérence des solides, J. Méc. Théor. Appl. 6 (1987), 383-407 French. (1987) Zbl0645.73046MR0912217
- Frémond, M., 10.1007/978-3-662-04800-9, Springer, Berlin (2002). (2002) Zbl0990.80001MR1885252DOI10.1007/978-3-662-04800-9
- Gasiński, L., Papageorgiou, N. S., 10.1201/9781420035049, Series in Mathematical Analysis and Applications 9. Chapman & Hall/CRC, Boca Raton (2006). (2006) Zbl1086.47001MR2168068DOI10.1201/9781420035049
- Han, W., Sofonea, M., 10.1090/amsip/030, AMS/IP Studies in Advanced Mathematics 30. American Mathematical Society, Providence (2002). (2002) Zbl1013.74001MR1935666DOI10.1090/amsip/030
- Kasri, A., Touzaline, A., Analysis and numerical approximation of a frictional contact problem with adhesion, Rev. Roum. Math. Pures Appl. 62 (2017), 477-503. (2017) Zbl1399.74025MR3743417
- Kasri, A., Touzaline, A., 10.1515/gmj-2018-0002, Georgian Math. J. 27 (2020), 249-264. (2020) Zbl1440.49010MR4104300DOI10.1515/gmj-2018-0002
- Klarbring, A., Mikelić, A., Shillor, M., 10.1016/0020-7225(88)90032-8, Int. J. Eng. Sci. 26 (1988), 811-832. (1988) Zbl0662.73079MR0958441DOI10.1016/0020-7225(88)90032-8
- Migórski, S., Ochal, A., Sofonea, M., 10.3934/dcdsb.2011.15.687, Discrete Contin. Dyn. Syst., Ser. B 15 (2011), 687-705. (2011) Zbl1287.74026MR2774134DOI10.3934/dcdsb.2011.15.687
- Nečas, J., Hlaváček, I., 10.1016/c2009-0-12554-0, Studies in Applied Mechanics 3. Elsevier, Amsterdam (1981). (1981) Zbl0448.73009MR0600655DOI10.1016/c2009-0-12554-0
- Panagiotopoulos, P. D., 10.1007/978-1-4612-5152-1, Birkhäuser, Boston (1985). (1985) Zbl0579.73014MR0896909DOI10.1007/978-1-4612-5152-1
- Raous, M., Cangémi, L., Cocu, M., 10.1016/S0045-7825(98)00389-2, Comput. Methods Appl. Mech. Eng. 177 (1999), 383-399. (1999) Zbl0949.74008MR1710458DOI10.1016/S0045-7825(98)00389-2
- Shillor, M., Sofonea, M., Telega, J. J., 10.1007/b99799, Lecture Notes in Physics 655. Springer, Berlin (2004). (2004) Zbl1069.74001DOI10.1007/b99799
- Sofonea, M., Han, W., Shillor, M., 10.1201/9781420034837, Pure and Applied Mathematics (Boca Raton) 276. Chapman &Hall/CRC Press, Boca Raton (2006). (2006) Zbl1089.74004MR2183435DOI10.1201/9781420034837
- Sofonea, M., Matei, A., 10.1007/978-0-387-87460-9, Advances in Mechanics and Mathematics 18. Springer, New York (2009). (2009) Zbl1195.49002MR2488869DOI10.1007/978-0-387-87460-9
- Sofonea, M., Rodríguez-Arós, A. D., Viaño, J. M., 10.1016/j.mcm.2004.01.011, Math. Comput. Modelling 41 (2005), 1355-1369. (2005) Zbl1080.47052MR2151949DOI10.1016/j.mcm.2004.01.011
- Touzaline, A., A quasistatic frictional contact problem with adhesion for nonlinear elastic materials, Electron. J. Differ. Equ. 2008 (2008), Article ID 131, 17 pages. (2008) Zbl1173.35709MR2443154
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.