A frictional contact problem with adhesion for viscoelastic materials with long memory

Abderrezak Kasri

Applications of Mathematics (2021)

  • Volume: 66, Issue: 4, page 479-508
  • ISSN: 0862-7940

Abstract

top
We consider a quasistatic contact problem between a viscoelastic material with long-term memory and a foundation. The contact is modelled with a normal compliance condition, a version of Coulomb's law of dry friction and a bonding field which describes the adhesion effect. We derive a variational formulation of the mechanical problem and, under a smallness assumption, we establish an existence theorem of a weak solution including a regularity result. The proof is based on the time-discretization method, the Banach fixed point theorem and arguments of lower semicontinuity, compactness and monotonicity.

How to cite

top

Kasri, Abderrezak. "A frictional contact problem with adhesion for viscoelastic materials with long memory." Applications of Mathematics 66.4 (2021): 479-508. <http://eudml.org/doc/297532>.

@article{Kasri2021,
abstract = {We consider a quasistatic contact problem between a viscoelastic material with long-term memory and a foundation. The contact is modelled with a normal compliance condition, a version of Coulomb's law of dry friction and a bonding field which describes the adhesion effect. We derive a variational formulation of the mechanical problem and, under a smallness assumption, we establish an existence theorem of a weak solution including a regularity result. The proof is based on the time-discretization method, the Banach fixed point theorem and arguments of lower semicontinuity, compactness and monotonicity.},
author = {Kasri, Abderrezak},
journal = {Applications of Mathematics},
keywords = {viscoelastic material; long memory; adhesion; quasistatic process; Coulomb's law of dry friction; normal compliance; the time-discretization method; variational inequality},
language = {eng},
number = {4},
pages = {479-508},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A frictional contact problem with adhesion for viscoelastic materials with long memory},
url = {http://eudml.org/doc/297532},
volume = {66},
year = {2021},
}

TY - JOUR
AU - Kasri, Abderrezak
TI - A frictional contact problem with adhesion for viscoelastic materials with long memory
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 479
EP - 508
AB - We consider a quasistatic contact problem between a viscoelastic material with long-term memory and a foundation. The contact is modelled with a normal compliance condition, a version of Coulomb's law of dry friction and a bonding field which describes the adhesion effect. We derive a variational formulation of the mechanical problem and, under a smallness assumption, we establish an existence theorem of a weak solution including a regularity result. The proof is based on the time-discretization method, the Banach fixed point theorem and arguments of lower semicontinuity, compactness and monotonicity.
LA - eng
KW - viscoelastic material; long memory; adhesion; quasistatic process; Coulomb's law of dry friction; normal compliance; the time-discretization method; variational inequality
UR - http://eudml.org/doc/297532
ER -

References

top
  1. Andersson, L.-E., 10.1016/0362-546X(91)90035-Y, Nonlinear Anal., Theory Methods Appl. 16 (1991), 347-369. (1991) Zbl0722.73061MR1093846DOI10.1016/0362-546X(91)90035-Y
  2. Brezis, H., 10.1007/978-0-387-70914-7, Universitext. Springer, New York (2011). (2011) Zbl1220.46002MR2759829DOI10.1007/978-0-387-70914-7
  3. Chau, O., Goeleven, D., Oujja, R., 10.1007/978-3-319-31338-2_4, Essays in Mathematics and Its Applications Springer, Cham (2016), 71-87. (2016) Zbl1405.35207MR3526915DOI10.1007/978-3-319-31338-2_4
  4. Chau, O., Shillor, M., Sofonea, M., 10.1007/s00033-003-1089-9, Z. Angew. Math. Phys. 55 (2004), 32-47. (2004) Zbl1064.74132MR2033859DOI10.1007/s00033-003-1089-9
  5. Chen, X., 10.1533/9781845697211, Elsevier, Amsterdam (2009). (2009) DOI10.1533/9781845697211
  6. Drozdov, A. D., 10.1142/2905, World Scientific, Singapore (1996). (1996) Zbl0839.73001MR1445291DOI10.1142/2905
  7. Duvaut, G., Lions, J.-L., Inequalities in Mechanics and Physics, Grundlehren der mathematischen Wissenschaften 219. Springer, Berlin (1976). (1976) Zbl0331.35002MR0521262
  8. Emmrich, E., Discrete versions of Gronwall's lemma and their application to the numerical analysis of parabolic problems, Preprint Series of the Institute of Mathematics Technische Universität Berlin (1999), Preprint 637-1999, 37 pages. 
  9. Frémond, M., Adhérence des solides, J. Méc. Théor. Appl. 6 (1987), 383-407 French. (1987) Zbl0645.73046MR0912217
  10. Frémond, M., 10.1007/978-3-662-04800-9, Springer, Berlin (2002). (2002) Zbl0990.80001MR1885252DOI10.1007/978-3-662-04800-9
  11. Gasiński, L., Papageorgiou, N. S., 10.1201/9781420035049, Series in Mathematical Analysis and Applications 9. Chapman & Hall/CRC, Boca Raton (2006). (2006) Zbl1086.47001MR2168068DOI10.1201/9781420035049
  12. Han, W., Sofonea, M., 10.1090/amsip/030, AMS/IP Studies in Advanced Mathematics 30. American Mathematical Society, Providence (2002). (2002) Zbl1013.74001MR1935666DOI10.1090/amsip/030
  13. Kasri, A., Touzaline, A., Analysis and numerical approximation of a frictional contact problem with adhesion, Rev. Roum. Math. Pures Appl. 62 (2017), 477-503. (2017) Zbl1399.74025MR3743417
  14. Kasri, A., Touzaline, A., 10.1515/gmj-2018-0002, Georgian Math. J. 27 (2020), 249-264. (2020) Zbl1440.49010MR4104300DOI10.1515/gmj-2018-0002
  15. Klarbring, A., Mikelić, A., Shillor, M., 10.1016/0020-7225(88)90032-8, Int. J. Eng. Sci. 26 (1988), 811-832. (1988) Zbl0662.73079MR0958441DOI10.1016/0020-7225(88)90032-8
  16. Migórski, S., Ochal, A., Sofonea, M., 10.3934/dcdsb.2011.15.687, Discrete Contin. Dyn. Syst., Ser. B 15 (2011), 687-705. (2011) Zbl1287.74026MR2774134DOI10.3934/dcdsb.2011.15.687
  17. Nečas, J., Hlaváček, I., 10.1016/c2009-0-12554-0, Studies in Applied Mechanics 3. Elsevier, Amsterdam (1981). (1981) Zbl0448.73009MR0600655DOI10.1016/c2009-0-12554-0
  18. Panagiotopoulos, P. D., 10.1007/978-1-4612-5152-1, Birkhäuser, Boston (1985). (1985) Zbl0579.73014MR0896909DOI10.1007/978-1-4612-5152-1
  19. Raous, M., Cangémi, L., Cocu, M., 10.1016/S0045-7825(98)00389-2, Comput. Methods Appl. Mech. Eng. 177 (1999), 383-399. (1999) Zbl0949.74008MR1710458DOI10.1016/S0045-7825(98)00389-2
  20. Shillor, M., Sofonea, M., Telega, J. J., 10.1007/b99799, Lecture Notes in Physics 655. Springer, Berlin (2004). (2004) Zbl1069.74001DOI10.1007/b99799
  21. Sofonea, M., Han, W., Shillor, M., 10.1201/9781420034837, Pure and Applied Mathematics (Boca Raton) 276. Chapman &Hall/CRC Press, Boca Raton (2006). (2006) Zbl1089.74004MR2183435DOI10.1201/9781420034837
  22. Sofonea, M., Matei, A., 10.1007/978-0-387-87460-9, Advances in Mechanics and Mathematics 18. Springer, New York (2009). (2009) Zbl1195.49002MR2488869DOI10.1007/978-0-387-87460-9
  23. Sofonea, M., Rodríguez-Arós, A. D., Viaño, J. M., 10.1016/j.mcm.2004.01.011, Math. Comput. Modelling 41 (2005), 1355-1369. (2005) Zbl1080.47052MR2151949DOI10.1016/j.mcm.2004.01.011
  24. Touzaline, A., A quasistatic frictional contact problem with adhesion for nonlinear elastic materials, Electron. J. Differ. Equ. 2008 (2008), Article ID 131, 17 pages. (2008) Zbl1173.35709MR2443154

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.