The Golomb space is topologically rigid
Taras O. Banakh; Dario Spirito; Sławomir Turek
Commentationes Mathematicae Universitatis Carolinae (2021)
- Volume: 62, Issue: 3, page 347-360
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBanakh, Taras O., Spirito, Dario, and Turek, Sławomir. "The Golomb space is topologically rigid." Commentationes Mathematicae Universitatis Carolinae 62.3 (2021): 347-360. <http://eudml.org/doc/297537>.
@article{Banakh2021,
abstract = {The Golomb space $\{\mathbb \{N\}\}_\tau $ is the set $\{\mathbb \{N\}\}$ of positive integers endowed with the topology $\tau $ generated by the base consisting of arithmetic progressions $\lbrace a+bn: n\ge 0\rbrace $ with coprime $a,b$. We prove that the Golomb space $\{\mathbb \{N\}\}_\tau $ is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017.},
author = {Banakh, Taras O., Spirito, Dario, Turek, Sławomir},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Golomb topology; topologically rigid space},
language = {eng},
number = {3},
pages = {347-360},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The Golomb space is topologically rigid},
url = {http://eudml.org/doc/297537},
volume = {62},
year = {2021},
}
TY - JOUR
AU - Banakh, Taras O.
AU - Spirito, Dario
AU - Turek, Sławomir
TI - The Golomb space is topologically rigid
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62
IS - 3
SP - 347
EP - 360
AB - The Golomb space ${\mathbb {N}}_\tau $ is the set ${\mathbb {N}}$ of positive integers endowed with the topology $\tau $ generated by the base consisting of arithmetic progressions $\lbrace a+bn: n\ge 0\rbrace $ with coprime $a,b$. We prove that the Golomb space ${\mathbb {N}}_\tau $ is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017.
LA - eng
KW - Golomb topology; topologically rigid space
UR - http://eudml.org/doc/297537
ER -
References
top- Banakh T., Is the Golomb countable connected space topologically rigid?, https://mathoverflow.net/questions/285557.
- Banakh T., Mioduszewski J., Turek S., On continuous self-maps and homeomorphisms of the Golomb space, Comment. Math. Univ. Carolin. 59 (2018), no. 4, 423–442.
- Brown M., A countable connected Hausdorff space, Bull. Amer. Math. Soc. 59 (1953), Abstract #423, page 367.
- Clark P. L., Lebowitz-Lockard N., Pollack P., 10.2989/16073606.2018.1438533, Quaest. Math. 42 (2019), no. 1, 73–86. DOI10.2989/16073606.2018.1438533
- Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
- Gauss C. F., Disquisitiones Arithmeticae, Springer, New York, 1986. Zbl1167.11001
- Golomb S., 10.1080/00029890.1959.11989385, Amer. Math. Monthly 66 (1959), 663–665. DOI10.1080/00029890.1959.11989385
- Golomb S., Arithmetica topologica, in: General Topology and Its Relations to Modern Analysis and Algebra, Proc. Symp., Prague, 1961, Academic Press, New York; Publ. House Czech. Acad. Sci., Prague (1962), pages 179–186 (Italian).
- Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, 84, Springer, New York, 1990.
- Jones G. A., Jones J. M., Elementary Number Theory, Springer Undergraduate Mathematics Series, Springer, London, 1998.
- Knopfmacher J., Porubský Š., Topologies related to arithmetical properties of integral domains, Exposition. Math. 15 (1997), no. 2, 131–148.
- Robinson D. J. S., A Course in the Theory of Groups, Graduate Texts in Mathematics, 80, Springer, New York, 1996. Zbl0836.20001
- Spirito D., 10.1016/j.topol.2020.107101, Topology Appl. 273 (2020), 107101, 20 pages. DOI10.1016/j.topol.2020.107101
- Spirito D., 10.2989/16073606.2019.1704904, Quaest. Math. 44 (2021), no. 4, 447–468. DOI10.2989/16073606.2019.1704904
- Steen L. A., Seebach J. A., Jr., Counterexamples in Topology, Dover Publications, Mineola, New York, 1995. Zbl0386.54001
- Szczuka P., 10.1515/dema-2010-0416, Demonstratio Math. 43 (2010), no. 4, 899–909. DOI10.1515/dema-2010-0416
- Szczuka P., The Darboux property for polynomials in Golomb's and Kirch's topologies, Demonstratio Math. 46 (2013), no. 2, 429–435.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.